Jump to content

Green photocatalyst

From Wikipedia, the free encyclopedia
(Redirected from Draft:Green Photocatalyst)

Green photocatalysts are photocatalysts derived from environmentally friendly sources.[1][2] They are synthesized from natural, renewable, and biological resources, such as plant extracts, biomass, or microorganisms, minimizing the use of toxic chemicals and reducing the environmental impact associated with conventional photocatalyst production.[3][4]

A photocatalyst is a material that absorbs light energy to initiate or accelerate a chemical reaction without being consumed in the process.[5] They are semiconducting materials which generate electron-hole pairs upon light irradiation. These photogenerated charge carriers[6] then migrate to the surface of the photocatalyst and interact with adsorbed species, triggering redox reactions.[7] They are promising candidates for a wide range of applications, including the degradation of organic pollutants in wastewater, the reduction of harmful gases, and the production of hydrogen or solar fuels.[8] Many methods exist to produce photocatalysts via both conventional and more green approaches including hydrothermal synthesis or sol-gel, the difference being in the material sources used.

Trend of Scopus-indexed publications on green photocatalysts, including bio-waste, macroalgae, and plant-based materials, from 2000 to 2024
VOSviewer analysis (© 2024 Centre for Science and Technology Studies, Leiden University) of 5,375 Scopus documents (1999–2026) retrieved using the search query "TITLE-ABS-KEY(green AND photocatalyst) AND PUBYEAR > 1999 AND PUBYEAR < 2026" reveals key trends in green photocatalyst research, including a focus on environmentally friendly synthesis methods and applications in environmental remediation and energy production

Green precursor materials for photocatalysts

[edit]

Green sources

[edit]

A green source for photocatalyst synthesis refers to a material that is renewable, biodegradable, and has minimal environmental impact during its extraction and processing.[3][4] This approach aligns with the principles of green chemistry, which aim to reduce or eliminate the use and generation of hazardous substances in chemical processes.[3][4] Green sources are abundant, readily available, and often considered as waste materials, thus offering a sustainable and cost-effective alternative to conventional photocatalyst precursors.[9]

Different synthesis approaches available for the preparation of metal nanoparticles for various application including as Green Photocatalyst

Plant-based precursors

[edit]

Plant extracts and agricultural waste products have emerged as promising green sources for photocatalyst production, offering attractive alternatives to conventional precursors due to their abundance, biodegradability, and cost-effectiveness.[10] Extracts from various plant parts, such as leaves, roots, and fruits, contain phyto-chemicals that can act as reducing and stabilizing agents in nanoparticle synthesis,[10][11] contributing to the formation of desired photocatalyst morphologies. Meanwhile, waste materials from agricultural processes, such as rice husks and sugarcane bagasse, are rich in cellulose and lignin.[12] These components can be used as precursors for carbon-based photocatalyst or as templates for the synthesis of porous nano-materials.[13][14]

Phenolic compounds role in the M. oleifera NPs synthesis
Plant-Based Nanoparticle/Nanocatalysts: Synthesis, Size, and Shape
Plant Common/Popular Name NPs synthesized and produced Size of NPs (nm) Shape of NPs Reference
Citrus limetta Sweet Lime/Mosambi CdO 54 Quasi-spherical [15]
Dillenia indica Elephant Apple CuO 15 Spherical [16]
Mikania micrantha Mile-a-minute Weed/American Rope CuO 15 Spherical [16]
Jackfruit Jackfruit La2O3 30 Needle-shaped [17]
Sansevieria trifasciata Snake Plant/Mother-in-Law's Tongue ZnFe2O4 5–20 Spherical [18]
Commelina benghalensis Benghal Dayflower/Tropical Spiderwort Ag–ZnO–CSs 20-100 Spherical [19]
Commelina benghalensis Benghal Dayflower/Tropical Spiderwort Au–ZnO–CSs 50-400 Spherical [19]
Senna siamea Siamese Cassia/Kassod Tree ZnO 37.39 Spherical [20]
Acacia nilotica Gum Arabic Tree Ag 5.72 ± 0.16 Spherical [21]
Epipremnum aureum Pothos/Devil's Ivy/Money Plant ZnO 29 Spherical [22]
Chinese Mahogany Chinese Mahogany LO 22.56 Long rod-like particles [23]
Citrullus colocynthis Colocynth/Bitter Apple Cu 17 ± 4.2 Spherical [24]
Aegle marmelos Bael/Bengal Quince FeO 18.78 Spherical [25]
Couroupita guianensis Cannonball Tree CaO 25.2 Clusters with irregular forms [26]

Notes:

  • NPs: Nanoparticles
  • CSS: Core-Shell Structure
  • The table summarizes various plant-based nanoparticles and nanocatalysts, including their synthesis methods, particle sizes, shapes, and corresponding references.
High-resolution transmission electron microscopy (HRTEM) images of ZnO nanoparticles synthesized by chemical and green methods using beetroot, cedar, and pomegranate extracts at different resolutions
SEM images of ZnO nanoparticles synthesized by chemical and green methods using beetroot, cedar, and pomegranate extracts at different resolutions

Bio-waste precursors

[edit]

Utilizing bio-waste, such as food waste and animal waste, for green photocatalyst synthesis offers a dual benefit of waste management and material production.[27] These waste streams are rich in organic matter, which can be converted into valuable carbon-based photocatalyst through various thermochemical processes.[28][29]

Bio-Waste/Agro-Waste Derived Nanomaterials: A Summary of Synthesis, Size, and Shape
Bio-waste NPs synthesized and produced Size of NPs (nm) Shape of NPs Reference
Waste oyster shells nHAp/ZnO/GO 9–22 Spherical [30]
Rice husk TiO2 6.2–7.6 Irregular sharp cylinder-like particles [31]
Waste of chicken eggshell CaO@NiO 15-20 Rod-like shape [32]
Papaya (Carica papaya L.) peel biowaste CuO 85–140 Agglomerated spherical [33]
Dragon fruit (Hylocereus polyrhizus) peel biowaste ZnO 56 Spherical [34]
Longan seeds biowaste ZnO 10–100 Irregular and hexagonal [35]
Banana pseudo stem TiO2 9.98–24.56 Polyhedral [36]
Agro-waste durva grass ZrO2 15-35 Spherical [37]
Agricultural waste Hibiscus cannabinus γ-Fe2O3/Si 48.3 Spherical [38]
Citrus reticulata Blanco (C. reticulata) waste ZnO 9 Hexagonal [39]
Rooibos tea waste Fe2O3–SnO2 - Tone-like structures, tiny rod-like structures, and well-dispersed [40]
Sugarcane bagasse Cu2O 38.02 Irregular [41]

Notes/Explanations:

  • NPs: Nanoparticles
  • nHAp/ZnO/GO: Nano-hydroxyapatite/Zinc Oxide/Graphene Oxide composite
  • CaO@NiO: Calcium Oxide coated with Nickel Oxide
  • y-Fe2O3/Si: Gamma-Iron(III) Oxide supported on Silicon
  • Fe2O3-SnO2: Iron Oxide-Tin Oxide composite
Green synthesis of ZnO nanoparticles using extracts from three marine macroalgae: (A) Ulva lactuca, (B) Ulva intestinalis, and (C) Sargassum muticum

Marine macroalgae/seaweed precursors

[edit]

Seaweed is a highly promising green source for photocatalyst synthesis due to its rapid growth rates and minimal environmental requirements.[42] It does not require freshwater or fertilizers for cultivation, making it a sustainable and environmentally friendly option.[43][44] Various seaweed species have been explored for their ability to produce nanoparticles and to act as templates for the synthesis of photocatalytic materials.[45][46][47]

Bio-Fabrication of Nanoparticles Using Marine Macroalgae Extracts
Species of Macroalgal Bioactive Substances Phytochemical Activities NPs synthesized and produced Size of NPs (nm) Shape of NPs Reference
Sargassum vulgare Polyphenols, polysaccharides, phytohormones, carotenoids, vitamins, unsaturated fatty acids and free amino acids. Reducing and capping agents Zn 50-150 Spherical [48]
Sargassum myriocystum Phenol Reducing and capping agents Ag 20 ± 2.2 Well dispersed hexagonal [49]
Sargassum coreanum Polysaccharides, polyphenols, lignans Reducing and stabilizing agent Ag 19 Distorted spherical shape [50]
Sargassum spp. Phenolics compounds Capping agent Ag 2-35 Spherical [51]
Padina tetrastromatica Favonoids, steroids, saponins, tannins, phenols and proteins Reducing and stabilizing agent Au 11.4 Nearly spherical [52]
Sargassum spp. Ase terpenoids, flavones, and polysaccharides Capping and stabilization agent Fe3O4 23.60 ± 0.62 Agglomerated spherical [53]
Sargassum tenerrimum Polyphenol and proteins Reducing, capping, and stabilizing agents Ag 22.5 Spherical [54]
Sargassum duplicatum Proteins containing amide and carboxyl groups and carbohydrates Reducing and stabilizing agent Ag 20-50 Spherical [55]
Caulerpa sertularioides Alkaloids, phenols, flavonoids, tannins, terpenoids, carbohydrates, glycosides, amino acids, and proteins Reducing and capping agent Ag 24-57 Spherical [56]
Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa Alkaloids, flavonoids, phenolic compounds, proteins, and sugars Reducing and capping agent Ag 20-25 Spherical [57]
Lobophora variegata Polyphenol, bromophenols, lobophorones, and sulphated polysaccharide Reduction, capping and stabilizing agent Ag 6.5-10 Oval [58]
red marine algae (Bushehr province, Iran) Amino acids, polysaccharides, carbohydrates Reducing and coating agent NiO 32.64 Spherical [59]

Notes/Explanations:

Dispersion and stability of green sources

[edit]
Marine Macroalgae as Green Stabilizing Agents for Nanoparticle Synthesis: Dispersion and Stability
Reference Marine Macroalgae Biogenic Capping Agents NPs synthesized and produced Zeta Potential Stability PDI Dispersion Potential Applications
[51] Sargassum spp. Polyphenols Ag −22.6 mV High stability 0.246 Monodispersity Pollutant detection in environmental
[60] Polycladia crinita Primary and tertiary amines, polysaccharides, amino acids Se − 13.9 mV High stability - Polydispersed Drug delivery
[61] Cystoseira tamariscifolia Polyphenols and polysaccharides Au −24.6 ± 1.5 mV High stability - - Biomedical
[62] Polysiphonia urceolata Phenols (bromophenols), terpenes, steroids, carbohydrates, and polypeptides CeO2NPs, NiONPs and CeO2/NiO NCS - High stability - Polydispersed Toxic ofloxacin remediation and antibacterial (green surfactant)
[63] Padina boergesenii Phenolic compounds, aromatic amine groups, nitro compounds, and aliphatic amines Se-ZnO −16.4 mV High stability 0.262 Polydispersed Biomedicine (anti-cancer)
[64] Ulva lactuca Polyphenols, flavonoids, terpenoids, polysaccharides, and proteins Ag −59.0 mV High stability 1.092 Monodispersed Azo-dyes Photodegradation and biomedical usage
[65] Enteromorpha prolifera Alcohol, thiol, carbon dioxide, and ketanine, alkene, carboxylic acid and amine and alkene compound Ag − 30.8 mV High stability 0.277 Polydispersed Biomedical field
[66] Sargassum wightii Polyphenols ZnO − 49.39 mV High stability 0.150 Polydispersed Biomedical field
[67] Turbinaria ornata Flavonoid and phenolic Ag –63.3 mV High stability 0.313 Monodispersed Biomedical field
[68] Sargassum angustifolium Polyphenols Ag − 27 mV High stability 0.15 Monodispersed Biomedicine (anti-bactrerial)
[69] Gracilaria birdiae Polysaccharides Ag −28.7 ± 0.7 mV - −31.7 ± 0.4 mV High stability 0.35 -0.68 Monodispersed Biomedicine

Notes/Explanations:

Common green precursor materials for photocatalysts

[edit]
Green Synthesis of Nano-materials Using Plant and Bio-Waste Extracts
Material Green Source(s) Advantages of Source Reference
TiO2 Plant extracts (e.g., Aloe vera) Abundant, biocompatible [70]
ZnO Agricultural waste (e.g., rice husks) Renewable, low cost, high surface area in derived materials [71]
CuO Plant extracts (e.g., Hibiscus sabdariffa L.) Biocompatible, non-toxic, can act as reducing and capping agents [72]
CeO2 Plant extracts (e.g., Azadirachta indica) Abundant, eco-friendly [73]
Carbon quantum dots Bio-waste (e.g., food waste) Waste management, cost-effective, tunable properties [74]
Graphene quantum dots Bio-waste (e.g., Spent tea leaves) Waste management, cost-effective, tunable properties [75]

Photocatalyst synthesis methods

[edit]
Schematic representation of the preparation of Lemon Peel, LP-ZnO NPs by hydrothermal method

Hydrothermal synthesis

[edit]

Hydrothermal synthesis is a green method that utilizes water under high pressure and temperature to facilitate chemical reactions.[76] It often avoids the need for organic solvents and offers control over crystal size and morphology, making it a versatile approach for producing various photocatalyst materials.[76]

Microwave-assisted synthesis

[edit]

Microwave-assisted synthesis employs microwaves to provide rapid and uniform heating, leading to faster reaction rates and potential for significant energy savings compared to conventional heating methods.[77] This technique is increasingly favored in green synthesis due to its reduced energy consumption and potential for shorter reaction times.[77]

Sol-gel method

[edit]

The sol-gel method involves the formation of a gel from a solution, followed by its conversion into a solid material through controlled drying and calcination.[78] It is a versatile technique widely used in the production of various photocatalyst materials, offering advantages in terms of controlling material composition and morphology.[78]

The schematic representation of the sol-gel synthesis of ZnO NPs using different types of chitosan sources and their application in antibacterial and photocatalytic degradation of MB dye

Comparing photocatalyst synthesis methods

[edit]

The table below provides a comparison of the advantages, potential limitations, and suitability of different green synthesis methods:

Comparison of Common Green Nanomaterials Synthesis Methods
Method Description Advantages Potential Limitations Suitable for... Reference
Hydrothermal Synthesis Water under high pressure & temperature facilitate chemical reactions Avoids organic solvents, controls crystal size & morphology Longer reaction times, specialized equipment needed Producing various photocatalytic materials [79]
Microwave-Assisted Synthesis Microwaves provide rapid & uniform heating Faster reaction rates, energy efficient Limited scalability, potential for uneven heating Synthesis of nanomaterials with controlled size & morphology [80]
Sol-Gel Method Gel from a solution is converted into a solid material Versatile in producing various materials, controls composition & morphology Requires careful control of parameters, can be time-consuming Metal oxide nanoparticles, thin films, and coatings [81]

Applications of photocatalysts

[edit]

Wastewater treatment

[edit]
Photocatalytic degradation mechanism of Safranin O dye pollutant using Centaurea behen leaf-AgNP composites under sunlight irradiation

Degradation of organic pollutants

[edit]

Green photocatalyst effectively break down organic contaminants in wastewater into less harmful products through a process known as photocatalytic oxidation.[82] Upon light irradiation, the photocatalyst generates reactive oxygen species (ROS), such as hydroxyl radicals (•OH) and superoxide radicals (O2•-), which attack and decompose organic pollutants.[83] Green photocatalyst synthesized from plant extracts or agricultural waste have shown promising results in degrading various dye molecules, including methylene blue, rhodamine B, and methyl orange.[84] Green photocatalyst have demonstrated the ability to remove pharmaceutical contaminants such as carbamazepine,[85] ibuprofen,[86] tetracycline[87][88] from wastewater. Additionally, green photocatalyst have been successfully employed in the degradation of pesticides such as alachlor.[89]

Green synthesis of magnetic nanocomposites using Eucalyptus globulus leaf extract and sugarcane bagasse biochar for the photocatalytic degradation of ciprofloxacin and amoxicillin
Plant-Based Synthesis of Nanoparticles for Environmental Remediation (Organic Compounds Degradation)
Plant Bioactive substances NPs synthesized and produced Size of NPs (nm) Shape of NPs Applications Ref
Froriepia subpinnata Flavonoids and phenolic Ag 18 Hemispherical and hexagonal Antimicrobial and adsorption of the Azo dye Acid-Red 58 [90]
Rhododendron arboreum Steroids, terpenoids, alkaloids, saponins, phenols, flavonoids, tannins, glycosides and polyphenolic ZnO 29.424 Spherical Dye photodegradation [91]
Elettaria cardamomum Phenolic CoFe2O4 20–50 Spherical Phenol red dye photodegradation [92]
Zingiber officinale Phenolic CoFe2O4 20–50 Spherical Phenol red dye photodegradation [92]
Tillandsia recurvata Tannins, reducing sugars, and carbohydrates ZnO 12–61 Spherical Methylene blue (MB) photodegradation [93]
Ajuga iva Carbohydrates, phenol groups, acidic fractions Ag 100-300 Polygonal poly–dispersed Methylene blue (MB) photodegradation [94]
Macleaya cordata Phenolic CuO 80 rectangular and square with irregular rod Methylene blue (MB) photodegradation and antibacterial [95]
Coleus scutellariodes Phenolic NiO 23 Rod shape Antibiotic (rufloxacin) photodegradation [96]
Eupatorium adenophorum Sesquiterpenoids, triterpenes, flavonoids, phenolics, coumarins, steroids, polyphenols, and phenylpropanols Ag 30–400 Spherical Rhodamin B photodegradation [97]

Notes/Explanations:

  • NPs: Nanoparticles
  • CoFe2O4: Cobalt Ferrite
Magnetic separation of green synthesized of magnetic nanocomposites using Eucalyptus globulus leaf extract and sugarcane bagasse biochar for the photocatalytic degradation of antibiotics, ciprofloxacin and amoxicillin

Removal of heavy metals

[edit]

In addition to degrading organic pollutants, green photocatalyst can also contribute to the removal of toxic heavy metals from wastewater. The large surface area and functional groups present on green photocatalyst, particularly those derived from carbon-based sources like bio-waste, can effectively adsorb heavy metal ions from the water.[98] Furthermore, photogenerated electrons[99] from the green photocatalyst can reduce heavy metal ions to their less toxic elemental forms, which can then be more easily removed from the wastewater.[98]

Antibacterial mechanism of Cb-AgNPs: disruption of cell membrane, generation of reactive oxygen species (ROS), and damage to cellular components

Antibacterial activity

[edit]

Mechanisms of action

[edit]

Green photocatalyst exhibit potent antibacterial properties due to their ability to generate ROS upon light irradiation.[100] These ROS, including hydroxyl radicals and superoxide radicals, can damage bacterial cell walls and membranes, leading to cell death.[101]

Antibacterial activity of Ligustrum vulgare berry extracts derived silver nanoparticles (LV-AgNPs) against P. aeruginosa and E. coli at various concentrations

Examples and applications

[edit]

Several green photocatalyst have shown promising antibacterial activity. ZnO nanoparticles synthesized using plant extracts have demonstrated strong antibacterial activity against a wide range of bacteria, including E. coli and Staphylococcus aureus.[102] TiO2-based photocatalyst, particularly those doped with silver or copper, exhibit enhanced antibacterial properties under visible light irradiation, making them suitable for disinfection applications.[103] Potential applications of these materials include water disinfection and the creation of antibacterial surfaces. Green photocatalyst can be used to disinfect water by killing harmful bacteria, offering a sustainable alternative to conventional disinfection methods.[103] Incorporating them into coatings or surfaces can create self-sterilizing materials, reducing the risk of bacterial contamination in healthcare settings and other environments.[103]

Plant-Based Synthesis of Nanoparticles for Biomedical Applications (Antimicrobial)
Plant Bioactive substances NPs synthesized and produced Size of NPs (nm) Shape of NPs Applications Ref
Piper guineense (Uziza) Phenolics and flavonoids ZnO 7.39 Spherical and well-dispersed Antibacterial [104]
Olea Europaea Protein, carbonyl, carboxyl, amide, and phenols Ag/Ag2O 45 Spherical Antimicrobial [105]
Froriepia subpinnata Flavonoids and phenolic Ag 18 Hemispherical and hexagonal Antimicrobial and adsorption of the Azo dye Acid-Red 58 [90]
Vitex negundo Flavonoids ZnO 40-50 Spherical Antibacterial and Anticancer [106]

Notes/Explanations:

Toxicity assessments

[edit]

Importance of toxicity evaluation

[edit]
Cytotoxic effect of shilajit-derived ZnO nanoparticles on HeLa cancer cells compared to cisplatin and normal Vero cells

Despite their sustainable origins, a thorough evaluation of the potential toxicity of green photocatalyst is essential to ensure their safe and responsible application in various settings. Even though they are synthesized from environmentally benign materials, their unique properties and nanoscale dimensions can potentially pose risks to human health and the environment.[107] It is crucial to assess the potential for adverse effects before widespread implementation of these materials in water treatment, air purification, or biomedical applications.

Methods for toxicity assessment

[edit]

Various methods are employed to assess the potential toxicity of green photocatalyst. Eco-toxicity tests expose organisms such as algae, daphnia, or fish to varying concentrations of the photocatalyst to evaluate their effects on growth, reproduction, or mortality.[108] These tests provide valuable insights into the potential impact of green photocatalyst on aquatic ecosystems. Cytotoxicity assays are conducted in laboratory settings using human cell lines to evaluate the potential toxicity of green photocatalysts to human cells.[109][110] These assays help determine the potential for adverse effects on human health upon exposure to these materials.

Toxicity Assessment of Marine Macroalgae-Derived Nanoparticles
Reference Macroalgal–NPs Animal/Organism Model Toxicity Test Exposure Duration Concentration/Dose Toxicity
[111] Ericaria amentacea–AgNPs Artemia salina Brine shrimp test 24 h 17.08 μg/mL Low
[112] Sargassum polycystum–AgNPs Artemia salina Brine shrimp test 24 h and 48 h 20 to 100 ppm Low
[113] Polycladia myrica–GZ Amphibalanus amphitrite Barnacle larvae cytotoxicity 24 h 0.031 mg mL−1 Low
[114] Kappaphycus alvarezii–ZnONPs 3T3 MTT assay 24 h and 48 h 5, 10, 20, 25, 50 and 100 μg/mL Low
[114] Kappaphycus alvarezii–ZnONPs MCF 7 MTT assay 48 h 75 μg/mL High

Notes/Explanations:

See also

[edit]

References

[edit]

  1. ^ Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018-10-30). "'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation". Journal of Nanobiotechnology. 16 (1): 84. doi:10.1186/s12951-018-0408-4. PMC 6206834. PMID 30373622.
  2. ^ Naushad, Mu, Rajendran, Saravanan, Lichtfouse, Eric, eds. (2020). Green Photocatalysts. Environmental Chemistry for a Sustainable World. Vol. 34. Cham: Springer. doi:10.1007/978-3-030-15608-4. ISBN 978-3-030-15607-7.
  3. ^ a b c Gupta D, Boora A, Thakur A, Gupta TK (15 August 2023). "Green and sustainable synthesis of nanomaterials: Recent advancements and limitations". Environmental Research. 231 (Pt 3): 116316. Bibcode:2023ER....23116316G. doi:10.1016/j.envres.2023.116316. PMID 37270084. Retrieved 31 August 2024.
  4. ^ a b c Alsaiari NS, Alzahrani FM, Amari A, Osman H, Harharah HN, Elboughdiri N, Tahoon MA (January 2023). "Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives". Molecules. 28 (1): 463. doi:10.3390/molecules28010463. PMC 9823860. PMID 36615655.
  5. ^ Mohamadpour F, Amani AM (2024). "Photocatalytic systems: reactions, mechanism, and applications". RSC Advances. 14 (29): 20609–20645. Bibcode:2024RSCAd..1420609M. doi:10.1039/D4RA03259D. PMC 11215501. PMID 38952944.
  6. ^ "Photogenerated carriers - (Organic Photovoltaics) - Vocab, Definition, Explanations | Fiveable".
  7. ^ Boyjoo Y, Jin Y, Li H, Zhao G, Guo H, Liu J (17 May 2023). "Nanoengineering of photocatalytic electrode materials toward net zero emissions". Cell Reports Physical Science. 4 (5): 101391. Bibcode:2023CRPS....401391B. doi:10.1016/j.xcrp.2023.101391.
  8. ^ Chauke NM, Mohlala RL, Ngqoloda S, Raphulu MC (2 February 2024). "Harnessing visible light: enhancing TiO2 photocatalysis with photosensitizers for sustainable and efficient environmental solutions". Frontiers in Chemical Engineering. 6. doi:10.3389/fceng.2024.1356021.
  9. ^ Pal K, Chakroborty S, Nath N (1 January 2022). "Limitations of nanomaterials insights in green chemistry sustainable route: Review on novel applications". Green Processing and Synthesis. 11 (1): 951–964. doi:10.1515/gps-2022-0081.
  10. ^ a b Osman AI, Zhang Y, Farghali M, Rashwan AK, Eltaweil AS, Abd El-Monaem EM, Mohamed IM, Badr MM, Ihara I, Rooney DW, Yap PS (1 April 2024). "Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review". Environmental Chemistry Letters. 22 (2): 841–887. Bibcode:2024EnvCL..22..841O. doi:10.1007/s10311-023-01682-3.
  11. ^ Antunes Filho S, Dos Santos MS, Dos Santos OA, Backx BP, Soran ML, Opriş O, Lung I, Stegarescu A, Bououdina M (January 2023). "Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils". Molecules. 28 (7): 3060. doi:10.3390/molecules28073060. PMC 10095647. PMID 37049821.
  12. ^ Varghese SA, Pulikkalparambil H, Promhuad K, Srisa A, Laorenza Y, Jarupan L, Nampitch T, Chonhenchob V, Harnkarnsujarit N (January 2023). "Renovation of Agro-Waste for Sustainable Food Packaging: A Review". Polymers. 15 (3): 648. doi:10.3390/polym15030648. PMC 9920369. PMID 36771949.
  13. ^ Gebretatios AG, Kadiri Kanakka Pillantakath AR, Witoon T, Lim JW, Banat F, Cheng CK (1 January 2023). "Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments". Chemosphere. 310: 136843. Bibcode:2023Chmsp.31036843G. doi:10.1016/j.chemosphere.2022.136843. PMID 36243081. Retrieved 5 September 2024.
  14. ^ September LA, Kheswa N, Seroka NS, Khotseng L (2023). "Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash – a mini review". RSC Advances. 13 (2): 1370–1380. Bibcode:2023RSCAd..13.1370S. doi:10.1039/D2RA07490G. PMC 9813804. PMID 36686953.
  15. ^ Pagar K, Gadore V, Mishra SR, Ahmaruzzaman M, Basnet P, Sanap D, Vu MC, Lin KY, Ravindran B, Ghotekar S (1 September 2024). "Bio-inspired Sustainable Fabrication of CdO Nanoparticles Using Citrus sinensis Peel Extract for Photocatalytic Degradation of Rhodamine B Dye". Topics in Catalysis. 67 (17): 1169–1182. doi:10.1007/s11244-024-01983-z. Retrieved 5 September 2024.
  16. ^ a b Sarifujjaman M, Pal PK, Saha P, Rahman SM, Islam ME, Rahman MM, Habib MA, Mahiuddin M (2024). "Synthesis of Copper Oxide Nanoparticles Using Leaf Extracts of Dillenia Indica and Mikania Micrantha: Investigation of their Potential as Photocatalysts and Antibacterial Agents". ChemistrySelect. 9 (26): e202401640. doi:10.1002/slct.202401640. Retrieved 5 September 2024.
  17. ^ C M, L ST, Al-Kahtani AA, Al-Odayni AB, G N, Ranganatha L (21 June 2024). "Facile green synthesis of lanthanum oxide nanoparticles: their photocatalytic and electrochemical applications". Journal of Materials Science: Materials in Electronics. 35 (18): 1203. doi:10.1007/s10854-024-13024-2. Retrieved 5 September 2024.
  18. ^ Saridewi N, Utami DJ, Zulys A, Nurbayti S, Nurhasni, Adawiah, Putri AR, Kamal R (1 June 2024). "Utilization of Lidah mertua (Sansevieria trifasciata) extract for green synthesis of ZnFe2O4 nanoparticle as visible-light responsive photocatalyst for dye degradation". Case Studies in Chemical and Environmental Engineering. 9: 100745. doi:10.1016/j.cscee.2024.100745.
  19. ^ a b Bopape DA, Motaung DE, Hintsho-Mbita NC (March 2024). "Biosynthesis of Gold- and Silver-Incorporated Carbon-Based Zinc Oxide Nanocomposites for the Photodegradation of Textile Dyes and Various Pharmaceuticals". Textiles. 4 (1): 104–125. doi:10.3390/textiles4010008.
  20. ^ Thangsan P, Wannakan K, Nanan S (1 March 2024). "Biosynthesis of ZnO using Senna siamea leaf extract for photodegradation of tetracycline antibiotic and azo dye in wastewater". OpenNano. 16: 100202. doi:10.1016/j.onano.2024.100202.
  21. ^ Nadeem N, Habib A, Hussain S, Sufian A, Ahmad I, Noreen F, Mehmood A, Ali F, Batoo KM, Ijaz MF (23 August 2024). "Ecofriendly Synthesis of Silver Nanoparticle for Phytochemical Screening, Photocatalytic and Biological Applications". Journal of Inorganic and Organometallic Polymers and Materials. doi:10.1007/s10904-024-03326-7. Retrieved 5 September 2024.
  22. ^ Brishti RS, Ahsan Habib M, Ara MH, Rezaul Karim KM, Khairul Islam M, Naime J, Hasan Rumon MM, Rayhan Khan MA (1 January 2024). "Green synthesis of ZnO NPs using aqueous extract of Epipremnum aureum leave: Photocatalytic degradation of Congo red". Results in Chemistry. 7: 101441. doi:10.1016/j.rechem.2024.101441.
  23. ^ Thakur M, Sharma A, Kumar A, Gautam M, Kumari S (1 December 2023). "Bio-synthesis of Lead Oxide Nanoparticles Using Chinese Mahogany Plant Extract (CMPE@LO) for Photocatalytic and Antimicrobial Activities". BioNanoScience. 13 (4): 1896–1910. doi:10.1007/s12668-023-01147-5. Retrieved 5 September 2024.
  24. ^ Nazir A, Alam S, Alwadai N, Abbas M, Bibi I, Ali A, Ahmad N, Al Huwayz M, Iqbal M (1 November 2023). "Green synthesis of copper nanoparticles using Citrullus colocynthis leaves extract: photocatalytic, antimicrobial and antioxidant studies". Zeitschrift für Physikalische Chemie. 237 (11): 1733–1751. doi:10.1515/zpch-2023-0331. Retrieved 5 September 2024.
  25. ^ Rama P, Thangapushbam V, Sivakami S, Jothika M, Mariselvi P, Sundaram R, Muthu K (1 April 2024). "Preparation, characterization of green synthesis FeO nanoparticles and their photocatalytic activity towards Basic Fuschin dye". Journal of the Indian Chemical Society. 101 (4): 101142. doi:10.1016/j.jics.2024.101142. Retrieved 5 September 2024.
  26. ^ Lalithamba HS, Siddekha A, Rashmi, Triveni BV (1 November 2023). "Plant mediated synthesis of CaO nano-particles and investigation of morphological, spectroscopic, electrical, and catalytic properties". Journal of Materials Science: Materials in Electronics. 34 (31): 2065. doi:10.1007/s10854-023-11523-2. Retrieved 6 September 2024.
  27. ^ Karić N, Maia AS, Teodorović A, Atanasova N, Langergraber G, Crini G, Ribeiro AR, Đolić M (15 March 2022). "Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment". Chemical Engineering Journal Advances. 9: 100239. Bibcode:2022CEJA....900239K. doi:10.1016/j.ceja.2021.100239.
  28. ^ Leong YK, Chang JS (1 May 2023). "Waste stream valorization-based low-carbon bioeconomy utilizing algae as a biorefinery platform". Renewable and Sustainable Energy Reviews. 178: 113245. Bibcode:2023RSERv.17813245L. doi:10.1016/j.rser.2023.113245. Retrieved 5 September 2024.
  29. ^ Son BT, Long NV, Nhat Hang NT (2021). "The development of biomass-derived carbon-based photocatalysts for the visible-light-driven photodegradation of pollutants: a comprehensive review". RSC Advances. 11 (49): 30574–30596. Bibcode:2021RSCAd..1130574S. doi:10.1039/D1RA05079F. PMC 9041516. PMID 35498934.
  30. ^ Chinnaswamy V, Mohan SG, Ramsamy KM, Tm S (1 June 2024). "Photocatalytic activity of ZnO doped Nano hydroxyapatite/GO derived from waste oyster shells for removal of Methylene blue". Environmental Science and Pollution Research. 31 (29): 41990–42011. Bibcode:2024ESPR...3141990C. doi:10.1007/s11356-024-33894-7. PMID 38858286. Retrieved 5 September 2024.
  31. ^ Liou TH, Liu RT, Liao YC, Ku CE (1 June 2024). "Green and sustainable synthesis of mesoporous silica from agricultural biowaste and functionalized with TiO2 nanoparticles for highly photoactive performance". Arabian Journal of Chemistry. 17 (6): 105764. doi:10.1016/j.arabjc.2024.105764.
  32. ^ Rani M, Sharma S, Keshu, Shanker U (29 February 2024). "Biowaste-derived nanocomposite of calcium oxide incorporated in nickel oxide for efficient removal of organic pollutants". Biomass Conversion and Biorefinery. Bibcode:2024BioCB.tmp..122R. doi:10.1007/s13399-024-05438-z. Retrieved 5 September 2024.{{cite journal}}: CS1 maint: bibcode (link)
  33. ^ Phang YK, Aminuzzaman M, Akhtaruzzaman M, Muhammad G, Ogawa S, Watanabe A, Tey LH (January 2021). "Green Synthesis and Characterization of CuO Nanoparticles Derived from Papaya Peel Extract for the Photocatalytic Degradation of Palm Oil Mill Effluent (POME)". Sustainability. 13 (2): 796. Bibcode:2021Sust...13..796P. doi:10.3390/su13020796.
  34. ^ Aminuzzaman M, Ng PS, Goh WS, Ogawa S, Watanabe A (2 November 2019). "Value-adding to dragon fruit (Hylocereus polyrhizus) peel biowaste: green synthesis of ZnO nanoparticles and their characterization". Inorganic and Nano-Metal Chemistry. 49 (11): 401–411. doi:10.1080/24701556.2019.1661464. Retrieved 5 September 2024.
  35. ^ Chankaew C, Tapala W, Grudpan K, Rujiwatra A (1 June 2019). "Microwave synthesis of ZnO nanoparticles using longan seeds biowaste and their efficiencies in photocatalytic decolorization of organic dyes". Environmental Science and Pollution Research. 26 (17): 17548–17554. Bibcode:2019ESPR...2617548C. doi:10.1007/s11356-019-05099-w. PMID 31025284. Retrieved 5 September 2024.
  36. ^ D S, P B, ka YA, S S (1 June 2024). "Agro-waste mediate to synthesize the solar light active titanium dioxide nanoparticles with enhanced efficacy of pollutant removal". Optik. 304: 171716. Bibcode:2024Optik.30471716D. doi:10.1016/j.ijleo.2024.171716. Retrieved 5 September 2024.
  37. ^ Narasaiah BP, Koppala S, Kar P, Lokesh B, Mandal BK (1 August 2022). "Photocatalytic and Antioxidant Studies of Bioinspired ZrO2 Nanoparticles Using Agriculture Waste Durva Grass Aqueous Extracts". Journal of Hazardous Materials Advances. 7: 100112. doi:10.1016/j.hazadv.2022.100112.
  38. ^ Rajendran A, Dhandapani B (2 August 2024). "A novel hydro-char mediated magnetic catalyst from Hibiscus cannabinus agricultural bio-waste in photocatalytic degradation of organic pollutant". Biomass Conversion and Biorefinery. doi:10.1007/s13399-024-06005-2. Retrieved 5 September 2024.
  39. ^ Vasiljevic Z, Vunduk J, Bartolic D, Miskovic G, Ognjanovic M, Tadic NB, Nikolic MV (20 May 2024). "An Eco-friendly Approach to ZnO NP Synthesis Using Citrus reticulata Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity". ACS Applied Bio Materials. 7 (5): 3014–3032. doi:10.1021/acsabm.4c00079. PMID 38597359. Retrieved 5 September 2024.
  40. ^ Adeiga OI, Pillay K (1 March 2024). "Rooibos tea waste binary oxide composite: An adsorbent for the removal of nickel ions and an efficient photocatalyst for the degradation of ciprofloxacin". Journal of Environmental Management. 355: 120274. Bibcode:2024JEnvM.35520274A. doi:10.1016/j.jenvman.2024.120274. PMID 38452618. Retrieved 5 September 2024.
  41. ^ Yadav S, Chauhan M, Mathur D, Jain A, Malhotra P (1 February 2021). "Sugarcane bagasse-facilitated benign synthesis of Cu2O nanoparticles and its role in photocatalytic degradation of toxic dyes: a trash to treasure approach". Environment, Development and Sustainability. 23 (2): 2071–2091. doi:10.1007/s10668-020-00664-7. Retrieved 5 September 2024.
  42. ^ Alprol AE, Mansour AT, Abdelwahab AM, Ashour M (May 2023). "Advances in Green Synthesis of Metal Oxide Nanoparticles by Marine Algae for Wastewater Treatment by Adsorption and Photocatalysis Techniques". Catalysts. 13 (5): 888. doi:10.3390/catal13050888.
  43. ^ Sultana F, Wahab MA, Nahiduzzaman M, Mohiuddin M, Iqbal MZ, Shakil A, Mamun AA, Khan MS, Wong L, Asaduzzaman M (1 September 2023). "Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review". Aquaculture and Fisheries. 8 (5): 463–480. Bibcode:2023AqFis...8..463S. doi:10.1016/j.aaf.2022.09.001.
  44. ^ Waqas MA, Hashemi F, Mogensen L, Knudsen MT (1 July 2024). "Environmental performance of seaweed cultivation and use in different industries: A systematic review". Sustainable Production and Consumption. 48: 123–142. Bibcode:2024SusPC..48..123W. doi:10.1016/j.spc.2024.05.001.
  45. ^ Fouda A, Eid AM, Abdelkareem A, Said HA, El-Belely EF, Alkhalifah DH, Alshallash KS, Hassan SE (July 2022). "Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment". Catalysts. 12 (7): 756. doi:10.3390/catal12070756.
  46. ^ Abdel-Raouf N, Al-Enazi NM, Ibraheem IB, Alharbi RM, Alkhulaifi MM (1 September 2019). "Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization". Saudi Journal of Biological Sciences. 26 (6): 1207–1215. Bibcode:2019SJBS...26.1207A. doi:10.1016/j.sjbs.2018.01.007. PMC 6733310. PMID 31516350.
  47. ^ Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (1 March 2013). "Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca". Colloids and Surfaces B: Biointerfaces. 103: 658–661. doi:10.1016/j.colsurfb.2012.11.022. PMID 23266074. Retrieved 21 January 2024.
  48. ^ Karkhane M, Lashgarian HE, Mirzaei SZ, Ghaffarizadeh A, Cherghipour K, Sepahvand A, Marzban A (1 October 2020). "Antifungal, antioxidant and photocatalytic activities of zinc nanoparticles synthesized by Sargassum vulgare extract". Biocatalysis and Agricultural Biotechnology. 29: 101791. doi:10.1016/j.bcab.2020.101791. Retrieved 21 January 2024.
  49. ^ Balaraman P, Balasubramanian B, Kaliannan D, Durai M, Kamyab H, Park S, Chelliapan S, Lee CT, Maluventhen V, Maruthupandian A (1 October 2020). "Phyco-synthesis of Silver Nanoparticles Mediated from Marine Algae Sargassum myriocystum and Its Potential Biological and Environmental Applications". Waste and Biomass Valorization. 11 (10): 5255–5271. Bibcode:2020WBioV..11.5255B. doi:10.1007/s12649-020-01083-5. Retrieved 21 January 2024.
  50. ^ Somasundaram CK, Atchudan R, Edison TN, Perumal S, Vinodh R, Sundramoorthy AK, Babu RS, Alagan M, Lee YR (November 2021). "Sustainable Synthesis of Silver Nanoparticles Using Marine Algae for Catalytic Degradation of Methylene Blue". Catalysts. 11 (11): 1377. doi:10.3390/catal11111377.
  51. ^ a b Vinayagam R, Nagendran V, Goveas LC, Narasimhan MK, Varadavenkatesan T, Chandrasekar N, Selvaraj R (1 February 2024). "Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide". Materials Chemistry and Physics. 313: 128787. doi:10.1016/j.matchemphys.2023.128787.
  52. ^ Princy KF, Gopinath A (1 September 2018). "Optimization of physicochemical parameters in the biofabrication of gold nanoparticles using marine macroalgae Padina tetrastromatica and its catalytic efficacy in the degradation of organic dyes". Journal of Nanostructure in Chemistry. 8 (3): 333–342. doi:10.1007/s40097-018-0277-2.
  53. ^ Bhole R, Gonsalves D, Murugesan G, Narasimhan MK, Srinivasan NR, Dave N, Varadavenkatesan T, Vinayagam R, Govarthanan M, Selvaraj R (1 September 2023). "Superparamagnetic spherical magnetite nanoparticles: synthesis, characterization and catalytic potential". Applied Nanoscience. 13 (9): 6003–6014. Bibcode:2023ApNan..13.6003B. doi:10.1007/s13204-022-02532-4. Retrieved 9 March 2024.
  54. ^ Solanki AD, Patel IC (1 June 2023). "Sargassum tenerrimum-mediated green synthesis of silver nanoparticles along with antimicrobial activity". Applied Nanoscience. 13 (6): 4415–4425. Bibcode:2023ApNan..13.4415S. doi:10.1007/s13204-022-02709-x. Retrieved 9 March 2024.
  55. ^ Sreebamol K, Devika J, Anu G (2023). "Biofabrication of Silver Nanoparticles for Selective and Sensitive Colorimetric Detection of Hg(II) Ions". Asian Journal of Chemistry. 35 (1): 153–158. doi:10.14233/ajchem.2023.23951.
  56. ^ Anjali R, Palanisamy S, Vinosha M, Selvi AM, Sathiyaraj G, Marudhupandi T, Mohandoss S, Prabhu NM, You S (1 October 2022). "Fabrication of silver nanoparticles from marine macro algae Caulerpa sertularioides: Characterization, antioxidant and antimicrobial activity". Process Biochemistry. 121: 601–618. doi:10.1016/j.procbio.2022.07.027. Retrieved 9 March 2024.
  57. ^ Abdel Azeem MN, Hassaballa S, Ahmed OM, Elsayed KN, Shaban M (December 2021). "Photocatalytic Activity of Revolutionary Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa's Bio-Capped Silver Nanoparticles for Industrial Wastewater Treatment". Nanomaterials. 11 (12): 3241. doi:10.3390/nano11123241. PMC 8709373. PMID 34947590.
  58. ^ Kitherian S, Thangapandi V, Jesu Antony MR (1 December 2021). "Seaweed Lobophora variegata-based Silver Nanopesticide for environmental friendly management of economically important pest, Spodoptera litura". Environmental Nanotechnology, Monitoring & Management. 16: 100531. Bibcode:2021ENMM...1600531K. doi:10.1016/j.enmm.2021.100531. Retrieved 9 March 2024.
  59. ^ Moavi J, Buazar F, Sayahi MH (18 March 2021). "Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives". Scientific Reports. 11 (1): 6296. doi:10.1038/s41598-021-85832-z. PMC 7973480. PMID 33739019.
  60. ^ Almurshedi AS, El-Masry TA, Selim H, El-Sheekh MM, Makhlof ME, Aldosari BN, Alfagih IM, Alquadeib BT, Almarshidy SS, El-Bouseary MM (5 September 2023). "New investigation of anti-inflammatory activity of Polycladia crinita and biosynthesized selenium nanoparticles: isolation and characterization". Microbial Cell Factories. 22 (1): 173. doi:10.1186/s12934-023-02168-1. PMC 10478239. PMID 37670273.
  61. ^ Machado S, Gonzalez-Ballesteros N, Goncalves A, Magalhães L, Sárria Pereira De Passos M, Rodriguez-Argüelles MC, Castro Gomes A (23 July 2021). "Toxicity in vitro and in Zebrafish Embryonic Development of Gold Nanoparticles Biosynthesized Using Cystoseira Macroalgae Extracts". International Journal of Nanomedicine. 16: 5017–5036. doi:10.2147/IJN.S300674. PMC 8315781. PMID 34326639.
  62. ^ Alarfaj N, Al Musayeib N, Amina M, El-Tohamy M (1 March 2024). "Synthesis and characterization of polysiphonia/cerium oxide/nickel oxide nanocomposites for the removal of toxins from contaminated water and antibacterial potential". Environmental Science and Pollution Research. 31 (11): 17064–17096. Bibcode:2024ESPR...3117064A. doi:10.1007/s11356-024-32199-z. PMID 38334931. Retrieved 12 May 2024.
  63. ^ Thirupathi B, Pongen YL, Kaveriyappan GR, Dara PK, Rathinasamy S, Vinayagam S, Sundaram T, Hyun BK, Durairaj T, Sekar SK (26 February 2024). "Padina boergesenii mediated synthesis of Se-ZnO bimetallic nanoparticles for effective anticancer activity". Frontiers in Microbiology. 15. doi:10.3389/fmicb.2024.1358467. PMC 10925794. PMID 38468852.
  64. ^ Maduraimuthu V, Ranishree JK, Gopalakrishnan RM, Ayyadurai B, Raja R, Heese K (June 2023). "Antioxidant Activities of Photoinduced Phycogenic Silver Nanoparticles and Their Potential Applications". Antioxidants. 12 (6): 1298. doi:10.3390/antiox12061298. PMC 10295127. PMID 37372028.
  65. ^ Kingslin A, Kalimuthu K, Kiruthika ML, Khalifa AS, Nhat PT, Brindhadevi K (1 March 2023). "Synthesis, characterization and biological potential of silver nanoparticles using Enteromorpha prolifera algal extract". Applied Nanoscience. 13 (3): 2165–2178. Bibcode:2023ApNan..13.2165K. doi:10.1007/s13204-021-02105-x. Retrieved 12 May 2024.
  66. ^ Sundaresan U, Kasi G (21 October 2023). "Synthesis of ZnO nanoparticles using Sargassum wightii ethanol extract and their antibacterial and anticancer applications". Biomass Conversion and Biorefinery. 14 (20): 26173–26191. doi:10.1007/s13399-023-04977-1. Retrieved 12 May 2024.
  67. ^ Raj CT, Muthukumar K, Dahms HU, James RA, Kandaswamy S (1 September 2023). "Structural characterization, antioxidant and anti-uropathogenic potential of biogenic silver nanoparticles using brown seaweed Turbinaria ornata". Frontiers in Microbiology. 14. doi:10.3389/fmicb.2023.1072043. PMC 10505674. PMID 37727290.
  68. ^ Rezazadeh NH, Buazar F, Matroodi S (12 November 2020). "Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles". Scientific Reports. 10 (1): 19615. Bibcode:2020NatSR..1019615R. doi:10.1038/s41598-020-76726-7. PMC 7665213. PMID 33184403.
  69. ^ De Aragão AP, De Oliveira TM, Quelemes PV, Perfeito ML, Araújo MC, Santiago Jd, Cardoso VS, Quaresma P, De Souza De Almeida Leite JR, Da Silva DA (1 December 2019). "Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity". Arabian Journal of Chemistry. 12 (8): 4182–4188. doi:10.1016/j.arabjc.2016.04.014.
  70. ^ Wellia DV, Syuadi AF, Rahma RM, Syafawi A, Habibillah MR, Arief S, Kurnia KA, Saepurahman, Kusumawati Y, Saefumillah A (1 June 2024). "Rind of Aloe vera (L.) Burm. f extract for the synthesis of titanium dioxide nanoparticles: Properties and application in model dye pollutant degradation". Case Studies in Chemical and Environmental Engineering. 9: 100627. Bibcode:2024CSCEE...900627W. doi:10.1016/j.cscee.2024.100627.
  71. ^ Vu AT, Tuyet Pham TA, Tran TT, Nguyen XT, Tran TQ, Tran QT, Nguyen TN, Doan TV, Vi TD, Nguyen CL, Nguyen MV, Lee CH (1 April 2020). "Synthesis of Nano-Flakes Ag•ZnO•Activated Carbon Composite from Rice Husk as A Photocatalyst under Solar Light". Bulletin of Chemical Reaction Engineering & Catalysis. 15 (1): 264–279. doi:10.9767/bcrec.15.1.5892.264-279. Retrieved 5 September 2024.
  72. ^ Almisbah SR, Mohammed AM, Elgamouz A, Bihi A, Kawde A (18 May 2023). "Green synthesis of CuO nanoparticles using Hibiscus sabdariffa L. extract to treat wastewater in Soba Sewage Treatment Plant, Sudan". Water Science and Technology. 87 (12): 3059–3071. Bibcode:2023WSTec..87.3059A. doi:10.2166/wst.2023.153. PMID 37387430.
  73. ^ Quddus F, Shah A, Nisar J, Zia MA, Munir S (18 September 2023). "Neem plant extract-assisted synthesis of CeO2 nanoparticles for photocatalytic degradation of piroxicam and naproxen". RSC Advances. 13 (40): 28121–28130. Bibcode:2023RSCAd..1328121Q. doi:10.1039/D3RA04185A. PMC 10517110. PMID 37746332.
  74. ^ Alkahtani SA, Mahmoud AM, Alqahtani YS, Ali AM, El-Wekil MM (15 December 2023). "Selective detection of rutin at novel pyridinic-nitrogen-rich carbon dots derived from chicken feet biowaste: The role of bovine serum albumin during the assay". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 303: 123252. Bibcode:2023AcSpA.30323252A. doi:10.1016/j.saa.2023.123252. PMID 37579662. Retrieved 11 June 2024.
  75. ^ Abbas A, Rubab S, Rehman A, Irfan S, Sharif H, Liang Q, Tabish T (1 June 2023). "One-step green synthesis of biomass-derived graphene quantum dots as a highly selective optical sensing probe". Materials Today Chemistry. 30: 101555. doi:10.1016/j.mtchem.2023.101555.
  76. ^ a b Nyabadza A, McCarthy É, Makhesana M, Heidarinassab S, Plouze A, Vazquez M, Brabazon D (1 November 2023). "A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage". Advances in Colloid and Interface Science. 321: 103010. doi:10.1016/j.cis.2023.103010. PMID 37804661.
  77. ^ a b Gabano E, Ravera M (30 June 2022). "Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This "Green" Method?". Molecules. 27 (13): 4249. doi:10.3390/molecules27134249. PMC 9267986. PMID 35807493.
  78. ^ a b Tseng TK, Lin YS, Chen YJ, Chu H (June 2010). "A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal". International Journal of Molecular Sciences. 11 (6): 2336–2361. doi:10.3390/ijms11062336. PMC 2904920. PMID 20640156.
  79. ^ Yaghoobi M, Asjadi F, Sanikhani M (1 March 2023). "A facile one-step green hydrothermal synthesis of paramagnetic Fe3O4 nanoparticles with highly efficient dye removal". Journal of the Taiwan Institute of Chemical Engineers. 144: 104774. doi:10.1016/j.jtice.2023.104774. Retrieved 5 September 2024.
  80. ^ Anjana VN, Joseph M, Francis S, Joseph A, Koshy EP, Mathew B (1 January 2021). "Microwave assisted green synthesis of silver nanoparticles for optical, catalytic, biological and electrochemical applications". Artificial Cells, Nanomedicine, and Biotechnology. 49 (1): 438–449. doi:10.1080/21691401.2021.1925678. PMID 34009083.
  81. ^ Johnson E, Krishnan RR, Chandran SR, Prema KH (1 September 2023). "Green mediated sol-gel synthesis of copper oxide nanoparticle: An efficient candidate for waste water treatment and antibacterial agent". Journal of Sol-Gel Science and Technology. 107 (3): 697–710. doi:10.1007/s10971-023-06172-0. Retrieved 5 September 2024.
  82. ^ Deng F, Shi H, Guo Y, Luo X, Zhou J (1 June 2021). "Engineering paths of sustainable and green photocatalytic degradation technology for pharmaceuticals and organic contaminants of emerging concern". Current Opinion in Green and Sustainable Chemistry. 29: 100465. Bibcode:2021COGSC..2900465D. doi:10.1016/j.cogsc.2021.100465. Retrieved 5 September 2024.
  83. ^ "A REVIEW: FACILE AND GREEN SYNTHESIS OF MARINE MACROALGAE AND ITS PHOTOCATALYTIC PERFORMANCE ON POLLUTED WATER REMEDIATION". Journal of Aquatropica Asia. 9 (1): 6–21. 25 June 2024. doi:10.33019/joaa.v9i1.5245 (inactive 2024-11-08). Retrieved 5 September 2024.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  84. ^ Khan KA, Shah A, Nisar J, Haleem A, Shah I (January 2023). "Photocatalytic Degradation of Food and Juices Dyes via Photocatalytic Nanomaterials Synthesized through Green Synthetic Route: A Systematic Review". Molecules. 28 (12): 4600. doi:10.3390/molecules28124600. PMC 10303217. PMID 37375155.
  85. ^ Mehmood S, Ahmed W, Rizwan M, Bundschuh J, Elnahal AS, Li W (14 April 2024). "Green synthesized zinc oxide nanoparticles for removal of carbamazepine in water and soil systems". Separation and Purification Technology. 334: 125988. doi:10.1016/j.seppur.2023.125988. Retrieved 5 September 2024.
  86. ^ Silva MC, Castro-Lopes S, Jerônimo AG, Barbosa R, Lins A, Trigueiro P, Viana BC, Araujo FP, Osajima JA, Peña-Garcia RR (January 2024). "Green Synthesis of Er-Doped ZnO Nanoparticles: An Investigation on the Methylene Blue, Eosin, and Ibuprofen Removal by Photodegradation". Molecules. 29 (2): 391. doi:10.3390/molecules29020391. PMC 10818354. PMID 38257303.
  87. ^ Nguyen TH, Le VT, Doan VD, Tran AV, Nguyen VC, Nguyen AT, Vasseghian Y (1 February 2022). "Green synthesis of Nb-doped ZnO nanocomposite for photocatalytic degradation of tetracycline antibiotic under visible light". Materials Letters. 308: 131129. Bibcode:2022MatL..30831129N. doi:10.1016/j.matlet.2021.131129. Retrieved 5 September 2024.
  88. ^ Abdullahi Ari H, Adewole AO, Ugya AY, Asipita OH, Musa MA, Feng W (16 April 2023). "Biogenic fabrication and enhanced photocatalytic degradation of tetracycline by bio structured ZnO nanoparticles". Environmental Technology. 44 (9): 1351–1366. Bibcode:2023EnvTe..44.1351A. doi:10.1080/09593330.2021.2001049. PMID 34736374.
  89. ^ Bai S, Lv T, Chen M, Li C, Wang Z, Yang X, Xia T (10 March 2024). "Carbon quantum dots assisted BiFeO3@BiOBr S-scheme heterojunction enhanced peroxymonosulfate activation for the photocatalytic degradation of imidacloprid under visible light: Performance, mechanism and biotoxicity". Science of the Total Environment. 915: 170029. doi:10.1016/j.scitotenv.2024.170029. PMID 38244629. Retrieved 5 September 2024.
  90. ^ a b Jamzad M, Mokhtari B, Mirkhani PS (1 March 2023). "Green synthesis of metal nanoparticles mediated by a versatile medicinal plant extract". Chemical Papers. 77 (3): 1455–1467. Bibcode:2023ChPap..77.1455J. doi:10.1007/s11696-022-02465-w. Retrieved 6 September 2024.
  91. ^ Tanuj, Kumar R, Kumar S, Kalra N, Sharma S, Singh A (1 November 2023). "Green synthesis of zinc oxide nanoparticles from Rhododendron arboreum extract and their potential applications in photocatalytic degradation of cationic dyes malachite green and Fuchsin basic dye". Chemical Papers. 77 (11): 6583–6604. Bibcode:2023ChPap..77.6583T. doi:10.1007/s11696-023-02960-8. Retrieved 6 September 2024.
  92. ^ a b Chandrani DN, Ghosh S, Tanna AR (3 February 2024). "Green Synthesis for Fabrication of Cobalt Ferrite Nanoparticles with Photocatalytic Dye Degrading Potential as a Sustainable Effluent Treatment Strategy". Journal of Inorganic and Organometallic Polymers and Materials. 34 (7): 3100–3114. doi:10.1007/s10904-023-02981-6. Retrieved 6 September 2024.
  93. ^ Ibarra-Cervantes NF, Vázquez-Núñez E, Gómez-Solis C, Fernández-Luqueño F, Basurto-Islas G, Álvarez-Martínez J, Castro-Beltrán R (1 February 2024). "Green synthesis of ZnO nanoparticles from ball moss (Tillandsia recurvata) extracts: characterization and evaluation of their photocatalytic activity". Environmental Science and Pollution Research. 31 (9): 13046–13062. Bibcode:2024ESPR...3113046I. doi:10.1007/s11356-024-31929-7. PMID 38240974. Retrieved 6 September 2024.
  94. ^ Al Moudani N, Laaraj S, Ouahidi I, Boukir A, Aarab L (1 February 2024). "Green synthesis of silver nanoparticles using leaves extract of Ajuga iva: characterizations, toxicity and photocatalytic activities". Chemical Papers. 78 (3): 1505–1516. doi:10.1007/s11696-023-03177-5. Retrieved 6 September 2024.
  95. ^ Zhu Y, Huang L, Liang M, Zhang Z, Xie H, Sheng X, Li X, Zhong M, Zhou B (3 October 2023). "Green synthesis of plate-shaped CuONPs using Macleaya cordata (Wild.) R.BR extracts for photocatalytic degradation and antibacterial properties". Biomass Conversion and Biorefinery. 14 (22): 29175–29187. doi:10.1007/s13399-023-04943-x. Retrieved 6 September 2024.
  96. ^ Ahmad W, Kaur N (1 November 2023). "Microwave-assisted single step green synthesis of NiO nanoparticles using Coleus scutellariodes leaf extract for the photocatalytic degradation of rufloxacin". MRS Advances. 8 (15): 835–842. Bibcode:2023MRSAd...8..835A. doi:10.1557/s43580-023-00618-x. Retrieved 6 September 2024.
  97. ^ Dua TK, Giri S, Nandi G, Sahu R, Shaw TK, Paul P (1 June 2023). "Green synthesis of silver nanoparticles using Eupatorium adenophorum leaf extract: characterizations, antioxidant, antibacterial and photocatalytic activities". Chemical Papers. 77 (6): 2947–2956. Bibcode:2023ChPap..77.2947D. doi:10.1007/s11696-023-02676-9. PMC 9873543. PMID 36714039. Retrieved 6 September 2024.
  98. ^ a b Bakhtiari S, Salari M, Shahrashoub M, Zeidabadinejad A, Sharma G, Sillanpää M (2024). "A Comprehensive Review on Green and Eco-Friendly Nano-Adsorbents for the Removal of Heavy Metal Ions: Synthesis, Adsorption Mechanisms, and Applications". Current Pollution Reports. 10 (March 2024): 1–39. Bibcode:2024CPolR..10....1B. doi:10.1007/s40726-023-00290-7.
  99. ^ Zhang Z, Wang L, Liu W, Yan Z, Zhu Y, Zhou S, Guan S (2021). "Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst". National Science Review. 8 (5): nwaa155. doi:10.1093/nsr/nwaa155. PMC 8288340. PMID 34691632.
  100. ^ Hwang C, Choi MH, Kim HE, Jeong SH, Park JU (19 August 2022). "Reactive oxygen species-generating hydrogel platform for enhanced antibacterial therapy". NPG Asia Materials. 14 (1): 72. Bibcode:2022npjAM..14...72H. doi:10.1038/s41427-022-00420-5.
  101. ^ Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E (January 2021). "The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies". International Journal of Molecular Sciences. 22 (9): 4642. doi:10.3390/ijms22094642. PMC 8125527. PMID 33924958.
  102. ^ El-Fallal AA, Elfayoumy RA, El-Zahed MM (14 November 2023). "Antibacterial activity of biosynthesized zinc oxide nanoparticles using Kombucha extract". SN Applied Sciences. 5 (12): 332. doi:10.1007/s42452-023-05546-x.
  103. ^ a b c Prakash J, Cho J, Mishra YK (1 April 2022). "Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread". Micro and Nano Engineering. 14: 100100. doi:10.1016/j.mne.2021.100100. Retrieved 5 September 2024.
  104. ^ Takcı DK, Ozdenefe MS, Huner T, Takcı HA (30 July 2024). "Plant-mediated green route to the synthesis of zinc oxide nanoparticles: in vitro antibacterial potential". Journal of the Australian Ceramic Society. doi:10.1007/s41779-024-01064-0.
  105. ^ Azzi M, Medila I, Toumi I, Laouini SE, Bouafia A, Hasan GG, Mohammed HA, Mokni S, Alsalme A, Barhoum A (22 November 2023). "Plant extract-mediated synthesis of Ag/Ag2O nanoparticles using Olea europaea leaf extract: assessing antioxidant, antibacterial, and toxicological properties". Biomass Conversion and Biorefinery. 14 (24): 31309–31322. doi:10.1007/s13399-023-05093-w. Retrieved 6 September 2024.
  106. ^ Mohammad MS, Perugu S (27 April 2023). "An aromatic plant bioactive compound corymbosin from Vitex negundo–mediated synthesis of zinc oxide nanoparticles, characterization, and their bioactivity against selected cancer cell lines and microbial pathogens". Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-04195-9. Retrieved 6 September 2024.
  107. ^ Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K (January 2024). "Gold Nanoparticles (AuNPs)—Toxicity, Safety and Green Synthesis: A Critical Review". International Journal of Molecular Sciences. 25 (7): 4057. doi:10.3390/ijms25074057. PMC 11012566. PMID 38612865.
  108. ^ Zhang F, Wang Z, Peijnenburg WJ, Vijver MG (15 November 2022). "Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials". Environmental Science & Technology. 56 (22): 15238–15250. Bibcode:2022EnST...5615238Z. doi:10.1021/acs.est.2c03333. PMC 9671040. PMID 36196869. Retrieved 6 September 2024.
  109. ^ Abedi Tameh F, Mohamed HE, Aghababaee L, Akbari M, Alikhah Asl S, Javadi MH, Aucamp M, Cloete KJ, Soleimannejad J, Maaza M (29 July 2024). "In-vitro cytotoxicity of biosynthesized nanoceria using Eucalyptus camaldulensis leaves extract against MCF-7 breast cancer cell line". Scientific Reports. 14 (1): 17465. Bibcode:2024NatSR..1417465A. doi:10.1038/s41598-024-68272-3. PMC 11286930. PMID 39075175.
  110. ^ Maheswaran H, Djearamane S, Tanislaus Antony Dhanapal AC, Wong LS (15 June 2024). "Cytotoxicity of green synthesized zinc oxide nanoparticles using Musa acuminata on Vero cells". Heliyon. 10 (11): e31316. Bibcode:2024Heliy..1031316M. doi:10.1016/j.heliyon.2024.e31316. PMC 11167271. PMID 38868065.
  111. ^ Mohamed Abdoul-Latif F, Ainane A, Aboubaker IH, Houssein Kidar B, Mohamed J, Lemrani M, Abourriche A, Ainane T (November 2023). "Ericaria amentacea Algae Extracts: A Sustainable Approach for the Green Synthesis of Silver Oxide Nanoparticles and Their Effectiveness against Leishmaniasis". Processes. 11 (11): 3227. doi:10.3390/pr11113227.
  112. ^ Lean JS, Wan Mohamad Ali WN, Ahmad R, Mohamed Nor Z, Wong CL, Ng JF (1 August 2023). "Size-tunable Sargassum polycystum mediated synthesis of silver nanoparticles and its larvicidal effect on Aedes aegypti". Journal of Applied Phycology. 35 (4): 1921–1931. Bibcode:2023JAPco..35.1921L. doi:10.1007/s10811-023-02997-y. Retrieved 4 June 2024.
  113. ^ Soleimani S, Yousefzadi M, Jannesari A, Ghaderi A, Shahdadi A (1 June 2023). "Green synthesis of graphene oxide-based nanocomposite by Polycladia myrica: antibacterial, anti-algae, and acute zooplanktonic responses". Journal of Applied Phycology. 35 (3): 1417–1429. Bibcode:2023JAPco..35.1417S. doi:10.1007/s10811-023-02951-y. Retrieved 4 June 2024.
  114. ^ a b "Fabrication of phyco-functionalized zinc oxide nanoparticles and their in vitro evaluation against bacteria and cancer cell line". Indian Journal of Biochemistry and Biophysics. 60 (10): 770–778. 27 September 2023. doi:10.56042/ijbb.v60i10.397. Retrieved 4 June 2024.