Barium azide
Appearance
Names | |
---|---|
Other names
Barium dinitride
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.038.706 |
EC Number |
|
PubChem CID
|
|
UN number | 1687 |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
Ba(N3)2 | |
Molar mass | 221.37 g/mol |
Appearance | White crystalline solid |
Odor | Odourless |
Density | 2.936 g/cm3[1] |
Melting point | 126 °C (259 °F; 399 K) |
Boiling point | 160 °C (320 °F; 433 K) (initial decomposition)[2] >217 °C (deflagrates) 180 °C (initial decomposition),[3] 225 °C explosion |
11.5 g/100 mL (0 °C) 14.98 g/100 mL (15.7 °C) 15.36 g/100 mL (20 °C) 22.73 g/100 mL (52.1 °C) 24.75 g/100 mL (70 °C)[4] | |
Solubility in ethanol | 0.017 g/100 mL (16 °C)[5] |
Solubility in acetone | Insoluble |
Solubility in ether | Insoluble |
Structure | |
Monoclinic | |
Hazards | |
GHS labelling: | |
Danger | |
H200, H301, H315, H319, H331, H335 | |
P210, P240, P264, P280, P305+P351+P338, P310 | |
Safety data sheet (SDS) | [1] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Barium azide is an inorganic azide with the formula Ba(N3)2. It is a barium salt of hydrazoic acid. Like all azides, it is explosive. It is less sensitive to mechanical shock than lead azide.
Preparation
[edit]Barium azide may be prepared by reacting sodium azide with a soluble barium salt:[6]
- BaBr2 + 2 NaN3 → Ba(N3)2 + 2NaBr
Uses
[edit]Barium azide can be used to make azides of magnesium, sodium, potassium, lithium, rubidium and zinc with their respective sulfates.[4]
- Ba(N3)2 + Li2SO4 → 2 LiN3 + BaSO4
It can also be used as a source for high purity nitrogen by heating:
- Ba(N3)2 → Ba + 3 N2
This reaction liberates metallic barium, which is used as a getter in vacuum applications.
See also
[edit]References
[edit]- ^ Fedoroff, Basil T.; Aaronson, Henry A.; Reese, Earl F.; Sheffield, Oliver E.; Clift, George D.; Dunkle, Cyrus G.; Walter, Hans; McLean, Dan C. (1960). Encyclopedia of Explosives and Related Items. Vol. 1. US Army Research and Development Command TACOM, ARDEC http://www.dtic.mil/get-tr-doc/pdf?AD=AD0257189.
{{cite encyclopedia}}
: Missing or empty|title=
(help)[dead link ] - ^ Tiede, Erich (1916). "Die Zersetzung der Alkali- und Erdalkali-azide im Hochvakuum zur Reindarstellung von Stickstoff". Ber. Dtsch. Chem. Ges. (in German). 49 (2): 1742–1745. doi:10.1002/cber.19160490234.
- ^ Audrieth, L. F. (1934). "Hydrazoic Acid and Its Inorganic Derivatives". Chem. Rev. 15 (2): 169–224. doi:10.1021/cr60051a002.
- ^ a b H. D. Fair; R. F. Walker, eds. (1977). Physics and Chemistry of the Inorganic Azides. Energetic Materials. Vol. 1. New York and London: Plenum Press. ISBN 9781489950093.
- ^ Curtius, T.; Rissom, J. (1898). "Neue Untersuchungen über den Stickstoffwasserstoff N3H". J. Prakt. Chem. (in German). 58 (1): 261–309. doi:10.1002/prac.18980580113.
- ^ Jobelius, Horst H.; Scharff, Hans-Dieter (2000). "Hydrazoic Acid and Azides". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a13_193. ISBN 9783527306732.