Jump to content

Haplogroup C (mtDNA)

From Wikipedia, the free encyclopedia
Haplogroup C
Possible time of origin36,473.3 (SD 7392.0) years[1]
Coalescence age27,370 (95% CI 19,550 <-> 35,440) ybp[2]
23,912.2 (SD 4780.8) years[1]
21,700 (95% CI 19,200 <-> 24,400) ybp[3]
Possible place of originEast Asia[4]
AncestorCZ
DescendantsC1, C4, C5, C7
Defining mutations489 10400 14783 15043[5]

In human mitochondrial genetics, Haplogroup C is a human mitochondrial DNA (mtDNA) haplogroup.

Origin

[edit]

Haplogroup C is believed to have arisen in East Asia[4] some 24,000 years before present. It is a descendant of the haplogroup M. Haplogroup C shares six mutations downstream of the MRCA of haplogroup M with haplogroup Z and five mutations downstream of the MRCA of haplogroup M with other members of haplogroup M8. This macro-haplogroup is known as haplogroup M8'CZ or simply as haplogroup M8.

Distribution

[edit]
Frequency distribution of mtDNA haplogroup C in Eurasia
Approximate geographical distribution of the C1 sub-clades.

Haplogroup C is found in Northeast Asia[6] (including Siberia) and the Americas. In Eurasia, Haplogroup C is especially frequent among populations of arctic Siberia, such as Nganasans, Dolgans, Yakuts, Evenks, Evens, Yukaghirs, and Koryaks.[7][8][9] Haplogroup C is one of five mtDNA haplogroups found in the indigenous peoples of the Americas,[6] the others being A, B, D, and X. The subclades C1b, C1c, C1d, and C4c are found in the first people of the Americas. C1a is found only in Asia.

In 2010, Icelandic researchers discovered C1e lineage in their home country, estimating an introduction date of year 1700 AD or earlier, indicating a possible introduction during the Viking expeditions to the Americas. A Native American origin for this C1e lineage is likely, but the researchers note that a European or Asian one cannot be ruled out.[10][11][12]

In 2014, a study discovered a new mtDNA subclade C1f from the remains of 3 people found in north-western Russia and dated to 7,500 years ago. It has not been detected in modern populations. The study proposed the hypothesis that the sister C1e and C1f subclades had split early from the most recent common ancestor of the C1 clade and had evolved independently. Subclade C1e had a northern European origin. Iceland was settled by the Vikings 1,130 years ago and they had raided heavily into western Russia, where the sister subclade C1f is now known to have resided. They proposed that both subclades were brought to Iceland through the Vikings, however C1e went extinct on mainland northern Europe due to population turnover and its small representation, and subclade C1f went extinct completely.[13]

In 2015, a study conducted in the Aconcagua mummy identified its mtDNA lineage belongs to the subclade C1bi, which contains 10 distinct mutations from C1b.[14]

Table of Frequencies by ethnic group

[edit]
Population Frequency Count Source Subtypes
Evenks (Stony Tunguska) 0.769 39 Duggan 2013 C4a2=7, C4a1c=6, C4b1=5, C5d1=4, C4b=3, C4b3=3, C4a1c1a=1, C5b1b=1
Evenk 0.718 71 Starikovskaya 2005 C(xC1, C5)=41, C5=10
Yukaghir 0.670 100 Volodko 2008 C(xC1, C5)=54, C5=13
Evenk (East) 0.644 45 Derenko 2007 C(xC1, C5)=17, C5=12
Tofalar 0.621 58 Derenko 2003 C(xC1, C5)=31, C5=5
Evens (Sebjan) 0.556 18 Duggan 2013 C4b=6, C4a1c=3, C5b1b=1
Yukaghirs 0.550 20 Duggan 2013 C4a1c=4, C4b3a=2, C4b7=2, C4a2=1, C5a2=1, C5d1=1
Yukaghirs (Yakutia) 0.545 22 Fedorova 2013 C4b3a=5, C5d1=3, C4a1c=1, C4a2=1, C4b1=1, C5a2a=1
Evens (Tompo) 0.519 27 Duggan 2013 C4a1c=6, C4a2=3, C4b=2, C4b1=2, C5d1=1
Nganasans 0.513 39 Volodko 2008 C(xC1, C5)=12, C5=8
Tozhu Tuvans 0.479 48 Derenko 2003 C(xC1, C5)=16, C5=7
Evenks (Yakutia) 0.472 125 Fedorova 2013 C4b1=13, C4a1c=11, C4b9=9, C4a2=8, C4b=5, C5b1b=4, C5a2=3, C5d1=2, C4a1=1, C4a1d=1, C4b3a=1, C5a1=1
Tuvans 0.472 231 [citation needed] C(xC1, C5)=88, C5=21
Yakut 0.469 254 [citation needed] C(xC1, C5)=95, C5=24
Evens (Berezovka) 0.467 15 Duggan 2013 C4b3a=4, C4b=1, C4b1=1, C4b7=1
Evenk (West) 0.466 73 Derenko 2007 C(xC1, C5)=29, C5=5
Evenks (Taimyr) 0.458 24 Duggan 2013 C4a1c=5, C4b1=4, C4a1c1a=1, C4a2=1
Yakut (Central) 0.457 164 Fedorova 2013 C4a1c=16, C4a2=14, C5b1b=13, C4b1=8, C4a1d=7, C4b=4, C4b1a=3, C5a1=3, C4a1=2, C5b1a=2, C4b3a=1, C5a2=1, C7a1c=1
Evens (Yakutia) 0.457 105 Fedorova 2013 C4a1c=15, C5d1=11, C4a2=4, C4b3a=3, C4b1=2, C4b7=2, C4b9=2, C4b=2, C5a1=2, C7a1c=2, C4b1a=1, C4b2=1, C5a2a=1
Evenks (Nyukzha) 0.413 46 Fedorova 2013 C4a2=10, C4b1=3, C4a1c=2, C4a1d=1, C4b1a=1, C5a2=1, C7a1c=1
Yakut (Northern) 0.405 148 Fedorova 2013 C4a1c=17, C4b1=16, C4a2=11, C5b1a=4, C5b1b=4, C4b9=3, C4b=2, C5a1=2, C5d1=1
Koryaks 0.400 15 Duggan 2013 C4b=3, C5a2=3
Dolgans 0.390 154 Fedorova 2013 C4a1c=33, C4b1=9, C5b1b=5, C4b3a=3, C4a2=2, C4b1a=2, C5b1a=2, C4b8=1, C4b=1, C5d1=1, C7a1c=1
Even 0.377 191 [citation needed] C(xC1, C5)=50, C5=22
Koryak 0.368 182 [citation needed] C(xC1, C5)=39, C5=28
Yakut (Vilyuy) 0.360 111 Fedorova 2013 C4a1c=14, C4a2=10, C4b=5, C4b1=4, C4b1a=2, C5a2=2, C5b1b=2, C4a1=1
Evens (Kamchatka) 0.333 39 Duggan 2013 C4b1=6, C4b3a=3, C4a1c=2, C5a2=1, C5d1=1
Altai-Kizhi 0.322 90 Derenko 2007 C(xC1, C5)=21, C5=8
Chuvantsi 0.313 32 Volodko 2008 C(xC1, C5)=10
Oroqen 0.295 44 Kong 2003 C(xC1, C5)=9, C5=4
Teleut 0.283 53 Derenko 2007 C(xC1, C5)=11, C5=4
Evens (Sakkyryyr) 0.261 23 Duggan 2013 C4a1c=2, C4b=2, C4a1d=1, C4b1=1
Udegey 0.226 31 Duggan 2013 C4b1=6, C4a1d=1
Mongolian (Ulaanbaatar) 0.213 47 Jin 2009 C=10
Buryat 0.212 419 [citation needed] C(xC1, C5)=66, C1=3, C5=20
Khakassian 0.208 110 Derenko 2003 C(xC1, C5)=28, C5=2
Barghut 0.201 149 [citation needed] C4a1a1=6, C4a1a2=3, C4a1b2=3, C4a2a1=2, C4b1a=2, C4b1=2, C4=2, C5b=2, C4a1a=1, C4a1a1a2=1, C4a1a2a2=1, C4a2a2=1, C5a1=1, C5a2=1, C5b1a=1, C7=1
Tubalar 0.194 72 Starikovskaya 2005 C(xC1, C5)=12, C5=2
Altaian 0.191 110 Derenko 2003 C(xC1, C5)=21
Evenks (Iengra) 0.190 21 Duggan 2013 C4a2=2, C4b1=1, C5a2=1
Udege 0.174 46 Starikovskaya 2005 C(xC1, C5)=8
Mongolian (Ulaanbaatar) 0.170 47 Derenko 2007 C4=4, C*(xC1,C4,C5)=3, C5=1
Telenghit 0.169 71 Derenko 2007 C(xC1, C5)=10, C5=2
Mongolian 0.153 150 [citation needed] C(xC1, C5)=18, C1=2, C5=3
Negidal 0.152 33 Starikovskaya 2005 C(xC1, C5)=3, C5=2
Kyrgyz (Kyzylsu) 0.145 138 [citation needed] C=20
Kyrgyz 0.140 200 [citation needed] C(xC1, C5)=18, C1=1, C5=9
Ulch 0.138 87 [citation needed] C(xC1, C5)=6, C1=1, C5=5
Turkmen 0.135 178 [citation needed] C(xC1, C5)=14, C5=10
Chukchi 0.132 417 [citation needed] C(xC1, C5)=27 C5=28
Kazakh (Xinjiang) 0.132 53 Yao 2004 C(xC1, C5)=5 C5=2
Itelmen 0.130 46 Schurr 1999 C5=6
Shor 0.122 82 Derenko 2007 C(xC1, C5)=9 C5=1
Orok 0.115 61 Bermisheva 2005 C1=7
Kyrgyz (Taxkorgan) 0.103 68 Peng 2017 C4=6, C5=1
Thai 0.100 40 Jin 2009 C=4
Nanai 0.094 85 Tamm 2007 C(xC1, C5)=5, C1=1, C5=2
Kazakh 0.086 511 [citation needed] C(xC1, C5)=32, C1=4, C5=8
Mongolian (Inner Mongolia) 0.083 97 [citation needed] C(xC1, C5)=5
Altaian (Kazakhstan) 0.082 98 [citation needed] C(xC1, C5)=8
Kyrgyz (Artux) 0.074 54 Peng 2017 C4=4
Tajik 0.073 82 Derenko 2007 C(xC1, C5)=6
Sarikoli 0.070 86 Peng 2017 C4a1a+A14878G=2, C4a1=2, C4b1=1, C4+T152C!+T4742C+T8602C=1
Daur 0.066 45 Kong 2003 C(xC1, C5)=2, C1=1
Uyghur (Xinjiang) 0.064 47 Yao 2004 C(xC1, C5)=3
Uzbek 0.061 130 Quintana-Murci 2004 C(xC1, C5)=6, C5=2
Vietnamese 0.048 42 Jin 2009 C=2
Han Chinese 0.045 1930 [citation needed] C(xC1, C5)=72, C5=15
Thai 0.034 552 [citation needed] C(xC1, C5)=19
Korean (mostly Ulsan) 0.030 1094 [citation needed] C=33
Manchu 0.025 40 Jin 2009 C=1
Korean 0.024 694 [citation needed] C=17
Korean (China) 0.020 51 Jin 2009 C=1
Korean (Korea) 0.016 185 Jin 2009 C=3
Korean 0.015 537 Tanaka 2004 C5=4, C(xC1,C5)=4
Korean 0.010 103 Derenko 2007 C(xC1,C4,C5)=1
Eskimo 0.008 254 [citation needed] C(xC1, C5)=2
Japanese 0.005 1312 Tanaka 2004 C1=4, C5=1, C(xC1,C5)=1
Japanese (Tokyo) 0.000 118 Zheng 2011 -
Ainu 0.000 51 [citation needed] -
Nivkh 0.000 38 Duggan 2013 -
Han (Beijing) 0.000 40 Jin 2009 -
Nivkh 0.000 56 Starikovskaya 2005 -

Subclades

[edit]

Tree

[edit]

This phylogenetic tree of haplogroup C subclades is based on the paper by Mannis van Oven and Manfred Kayser Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation[5] and subsequent published research.

[edit]

See also

[edit]

Phylogenetic tree of human mitochondrial DNA (mtDNA) haplogroups

  Mitochondrial Eve (L)    
L0 L1–6  
L1 L2   L3     L4 L5 L6
M N  
CZ D E G Q   O A S R   I W X Y
C Z B F R0   pre-JT   P   U
HV JT K
H V J T

References

[edit]
  1. ^ a b Behar et al., 2012b
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg Derenko,M., Malyarchuk,B., Grzybowski,T., Denisova,G., Rogalla,U., Perkova,M., Dambueva,I., and Zakharov,I., "Origin and post-glacial dispersal of mitochondrial DNA haplogroups C and D in northern Asia." PLoS ONE 5 (12), E15214 (2010).
  3. ^ a b c d e f g h i j k l m n o p q r s YFull MTree 1.02.7045 (as of January 11, 2021)
  4. ^ a b Derenko, Miroslava; Malyarchuk, Boris; Grzybowski, Tomasz; Denisova, Galina; Rogalla, Urszula; Perkova, Maria; Dambueva, Irina; Zakharov, Ilia (2010). "Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia". PLOS ONE. 5 (12): e15214. Bibcode:2010PLoSO...515214D. doi:10.1371/journal.pone.0015214. ISSN 1932-6203. PMC 3006427. PMID 21203537."More than a half of the northern Asian pool of mtDNA is fragmented into a number of subclades of haplogroups C and D, two of the most frequent haplogroups throughout northern, eastern, central Asia and America. Previous studies have proposed that haplogroups C and D originated around 30–50 kya in eastern Asia, from where they subsequently expanded northwards to southern Siberia, and further deep into northern Asia and the Americas, and westwards along the Steppe Belt extending from Manchuria to Europe [14], [15]. It has been also shown that haplogroups C and D were strongly involved in the late-glacial expansions from southern China to northeastern India [16]. In addition, because of their high frequency and wide distribution, haplogroups C and D most likely participated in all subsequent episodes of putative gene flow in northern Eurasia. These include (i) the Paleolithic colonization of Siberia that is associated with the development of macroblade industries (40–30 kya), (ii) further recolonization and possible replacement of early Siberians by microblade-making human populations from the Lake Baikal, Yenisei River, and Lena River basin regions (20 kya), (iii) appearance of pottery-making Neolithic tradition in the forest-steppe belt of northern Eurasia starting at about 14.5 kya and its expanding into the East European Plane (7 kya), (iv) the Neolithic dispersal of agriculture in eastern Asia, (v) the expansion of the Afanasievo and Andronovo cultures (5–3 kya), and (vi) more recent events of gene flow to eastern and central Europe. "
  5. ^ a b van Oven, Mannis; Manfred Kayser (13 Oct 2008). "Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation". Human Mutation. 30 (2): E386 – E394. doi:10.1002/humu.20921. PMID 18853457. S2CID 27566749.
  6. ^ a b Haplogroup C.
  7. ^ a b c d e f g h i j k l m n o p q r Volodko, Natalia V.; Starikovskaya, Elena B.; Mazunin, Ilya O.; et al. (2008). "Mitochondrial Genome Diversity in Arctic Siberians, with Particular Reference to the Evolutionary History of Beringia and Pleistocenic Peopling of the Americas". The American Journal of Human Genetics. 82 (5): 1084–1100. doi:10.1016/j.ajhg.2008.03.019. PMC 2427195. PMID 18452887.
  8. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at Duggan, AT; Whitten, M; Wiebe, V; Crawford, M; Butthof, A; et al. (2013). "Investigating the Prehistory of Tungusic Peoples of Siberia and the Amur-Ussuri Region with Complete mtDNA Genome Sequences and Y-chromosomal Markers". PLOS ONE. 8 (12): e83570. Bibcode:2013PLoSO...883570D. doi:10.1371/journal.pone.0083570. PMC 3861515. PMID 24349531.
  9. ^ Fedorova, Sardana A; Reidla, Maere; Metspalu, Ene; et al. (2013). "Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia". BMC Evolutionary Biology. 2013 (13): 127. Bibcode:2013BMCEE..13..127F. doi:10.1186/1471-2148-13-127. PMC 3695835. PMID 23782551.
  10. ^ Sunna Ebenesersdóttir, Sigríður (2010). "A new subclade of mtDNA haplogroup C1 found in icelanders: Evidence of pre-columbian contact?". American Journal of Physical Anthropology. 144 (1): 92–99. doi:10.1002/ajpa.21419. PMID 21069749.
  11. ^ Vikings brought Amerindian to Iceland 1,000 years ago: study, November 17, 2010
  12. ^ First Americans 'reached Europe five centuries before Columbus voyages', 16 Nov 2010
  13. ^ Der Sarkissian, Clio; Brotherton, Paul; Balanovsky, Oleg; Templeton, Jennifer E. L.; Llamas, Bastien; Soubrier, Julien; Moiseyev, Vyacheslav; Khartanovich, Valery; Cooper, Alan; Haak, Wolfgang (2014). "Mitochondrial Genome Sequencing in Mesolithic North East Europe Unearths a New Sub-Clade within the Broadly Distributed Human Haplogroup C1". PLOS ONE. 9 (2): e87612. Bibcode:2014PLoSO...987612D. doi:10.1371/journal.pone.0087612. PMC 3913659. PMID 24503968.
  14. ^ Gómez-Carballa & Catelli 2015.
  15. ^ a b c d e f g h i j k l Guang‐Lin He, Meng‐Ge Wang, Xing Zou, Hui‐Yuan Yeh, Chang‐Hui Liu, Chao Liu, Gang Chen, and Chuan‐Chao Wang. Extensive ethnolinguistic diversity at the crossroads of North China and South Siberia reflects multiple sources of genetic diversity[J]. J Syst Evol, 2023, 61(1): 230-250.
  16. ^ Filipa Simão, Christina Strobl, Carlos Vullo, et al., "The maternal inheritance of Alto Paraná revealed by full mitogenome sequences." FSI Genetics Volume 39, P66-72, March 01, 2019. Published online December 19, 2018. DOI:https://doi.org/10.1016/j.fsigen.2018.12.007
  17. ^ a b c d e f g Starikovskaya, E.B., Sukernik, R.I., Derbeneva, O.A., Volodko, N.V., Ruiz-Pesini, E., Torroni, A., Brown, M.D., Lott, M.T., Hosseini, S.H., Huoponen, K. and Wallace, D.C., "Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origins of Native American haplogroups." Annals of Human Genetics 69 (PT 1), 67-89 (2005).
  18. ^ a b c d Ingman, M.; Gyllensten, U. (2007). "Rate variation between mitochondrial domains and adaptive evolution in humans". Human Molecular Genetics. 16 (19): 2281–2287. doi:10.1093/hmg/ddm180. PMID 17617636.
  19. ^ a b Sebastian Lippold; et al. (2014). "Human paternal and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA sequences". bioRxiv 10.1101/001792.
  20. ^ Derenko, Miroslava; Malyarchuk, Boris; Grzybowski, Tomasz; et al. (2007). "Phylogeographic Analysis of Mitochondrial DNA in Northern Asian Populations". Am. J. Hum. Genet. 81 (5): 1025–1041. doi:10.1086/522933. PMC 2265662. PMID 17924343.
  21. ^ a b c Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne (2017). "Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations". American Journal of Physical Anthropology. 162 (4): 627–640. doi:10.1002/ajpa.23151. PMID 28158897.
  22. ^ a b c d e f g U.A. Perego, N. Angerhofer, M. Pala, et al., "The initial peopling of the Americas: a growing number of founding mitochondrial genomes from Beringia." Genome Res. 20 (9), 1174-1179 (2010).
  23. ^ S. Kumar, C. Bellis, M. Zlojutro, et al., "Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins." BMC Evol. Biol. 11 (1), 293 (2011).
  24. ^ a b R.S. Malhi, J.S. Cybulski, R.Y. Tito, et al., "Brief communication: Mitochondrial haplotype C4c confirmed as a founding genome in the Americas." Am. J. Phys. Anthropol. 141 (3), 494-497 (2010).
  25. ^ a b c d e Peng, Min-Sheng; Xu, Weifang; Song, Jiao-Jiao; Chen, Xing; Sulaiman, Xierzhatijiang; Cai, Liuhong; Liu, He-Qun; Wu, Shi-Fang; Gao, Yun; Abdulloevich, Najmudinov Tojiddin; Afanasevna, Manilova Elena; Ibrohimovich, Khudoidodov Behruz; Chen, Xi; Yang, Wei-Kang; Wu, Miao; Li, Gui-Mei; Yang, Xing-Yan; Rakha, Allah; Yao, Yong-Gang; Upur, Halmurat; Zhang, Ya-Ping (2018). "Mitochondrial genomes uncover the maternal history of the Pamir populations". European Journal of Human Genetics. 26 (1): 124–136. doi:10.1038/s41431-017-0028-8. PMC 5839027. PMID 29187735.
  26. ^ Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja; Petr, Martin; Mallick, Swapan; Fernandes, Daniel; Furtwängler, Anja; Haak, Wolfgang; Meyer, Matthias; Mittnik, Alissa; Nickel, Birgit (June 2016). "The genetic history of Ice Age Europe". Nature. 534 (7606): 200–205. Bibcode:2016Natur.534..200F. doi:10.1038/nature17993. hdl:10211.3/198594. ISSN 1476-4687. PMC 4943878. PMID 27135931.
  27. ^ a b c Kilinc, G.M., Kashuba, N., Yaka, R., Sumer, A.P., Yuncu, E., Shergin, D., Ivanov, G.L., Kichigin, D., Pestereva, K., Volkov, D., Mandryka, P., Kharinskii, A., Tishkin, A., Ineshin, E., Kovychev, E., Stepanov, A., Alekseev, A., Fedoseeva, S.A., Somel, M., Jakobsson, M., Krzewinska, M., Stora, J., and Gotherstrom, A., "Investigating Holocene human population history in North Asia using ancient mitogenomes." Sci Rep 8 (1), 8969 (2018)
  28. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Dryomov SV, Nazhmidenova AM, Starikovskaya EB, Shalaurova SA, Rohland N, Mallick S, et al. (2021), "Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia." PLoS ONE 16(1):e0244228.https://doi.org/10.1371/journal.pone.0244228
  29. ^ a b c d e f g h i j k Chandrasekar, A; Kumar, S; Sreenath, J; Sarkar, BN; Urade, BP; et al. (2009). "Updating Phylogeny of Mitochondrial DNA Macrohaplogroup M in India: Dispersal of Modern Human in South Asian Corridor". PLOS ONE. 4 (10): e7447. Bibcode:2009PLoSO...4.7447C. doi:10.1371/journal.pone.0007447. PMC 2757894. PMID 19823670.
  30. ^ Mielnik-Sikorska, M; Daca, P; Malyarchuk, B; Derenko, M; Skonieczna, K; et al. (2013). "The History of Slavs Inferred from Complete Mitochondrial Genome Sequences". PLOS ONE. 8 (1): e54360. Bibcode:2013PLoSO...854360M. doi:10.1371/journal.pone.0054360. PMC 3544712. PMID 23342138.
  31. ^ Malyarchuk,B., Derenko,M., Denisova,G., et al., "Whole mitochondrial genome diversity in two Hungarian populations." Mol. Genet. Genomics (2018).
  32. ^ a b c d Derenko, M; Malyarchuk, B; Bahmanimehr, A; Denisova, G; Perkova, M; et al. (2013). "Complete Mitochondrial DNA Diversity in Iranians". PLOS ONE. 8 (11): e80673. Bibcode:2013PLoSO...880673D. doi:10.1371/journal.pone.0080673. PMC 3828245. PMID 24244704.
  33. ^ Rieux, Adrien; Eriksson, Anders; Li, Mingkun; et al. (2014). "Improved Calibration of the Human Mitochondrial Clock Using Ancient Genomes". Mol Biol Evol. 31 (10): 2780–92. doi:10.1093/molbev/msu222. PMC 4166928. PMID 25100861.
  34. ^ a b c d e f Derenko, M. V.; Grzybowski, T.; Malyarchuk, B. A.; Dambueva, I. K.; Denisova, G. A.; Czarny, J.; Dorzhu, C. M.; Kakpakov, V. T.; Miscicka-Sliwka, D.; Wozniak, M.; Zakharov, I. A. (September 2003). "Diversity of Mitochondrial DNA Lineages in South Siberia". Annals of Human Genetics. 67 (5): 391–411. doi:10.1046/j.1469-1809.2003.00035.x. PMID 12940914. S2CID 28678003.
  35. ^ Dryomov, S.V., Starikovskaya, E.B., Nazhmidenova, A.M. et al. Genetic legacy of cultures indigenous to the Northeast Asian coast in mitochondrial genomes of nearly extinct maritime tribes. BMC Evol Biol 20, 83 (2020). https://doi.org/10.1186/s12862-020-01652-1
  36. ^ Klunk, J., Duggan, A.T., Redfern, R., et al., "Genetic resiliency and the Black Death: No apparent loss of mitogenomic diversity due to the Black Death in medieval London and Denmark." Am. J. Phys. Anthropol. (2019).
  37. ^ a b c d e f g h Kutanan, Wibhu; Kampuansai, Jatupol; Srikummool, Metawee; Kangwanpong, Daoroong; Ghirotto, Silvia; Brunelli, Andrea; Stoneking, Mark (2016). "Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai–Kadai languages". Hum Genet. 136 (1): 85–98. doi:10.1007/s00439-016-1742-y. PMC 5214972. PMID 27837350.
  38. ^ O. A. Derbeneva, E. B. Starikovskaya, N. V. Volodko, D. C. Wallace, and R. I. Sukernik, "Mitochondrial DNA Variation in the Kets and Nganasans and Its Implications for the Initial Peopling of Northern Eurasia." Russian Journal of Genetics, Vol. 38, No. 11, 2002, pp. 1316–1321. Translated from Genetika, Vol. 38, No. 11, 2002, pp. 1554–1560.
  39. ^ Kristiina Tambets, Bayazit Yunusbayev, Georgi Hudjashov, et al., "Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations." Genome Biology (2018) 19:139. https://doi.org/10.1186/s13059-018-1522-1
  40. ^ a b Ingman, M.; Kaessmann, H.; Paabo, S.; Gyllensten, U. (2000). "Mitochondrial genome variation and the origin of modern humans". Nature. 408 (6813): 708–713. Bibcode:2000Natur.408..708I. doi:10.1038/35047064. PMID 11130070. S2CID 52850476.
  41. ^ Tamm, E; Kivisild, T; Reidla, M; Metspalu, M; Smith, DG; Mulligan, CJ; Bravi, CM; Rickards, O; Martinez-Labarga, C; Khusnutdinova, EK; Fedorova, SA; Golubenko, MV; Stepanov, VA; Gubina, MA; Zhadanov, SI; Ossipova, LP; Damba, L; Voevoda, MI; Dipierri, JE; Villems, R; Malhi, RS (2007). "Beringian standstill and spread of Native American founders". PLOS ONE. 2 (9): e829. Bibcode:2007PLoSO...2..829T. doi:10.1371/journal.pone.0000829. PMC 1952074. PMID 17786201.
  42. ^ FamilyTreeDNA - Cherokee DNA Project. (n.d.). https://www.familytreedna.com/public/CherokeeDNAProject?iframe=mtresults
  43. ^ Malyarchuk,B., Litvinov,A., Derenko,M., Skonieczna,K., Grzybowski,T., Grosheva,A., Shneider,Y., Rychkov,S. and Zhukova,O., "Mitogenomic diversity in Russians and Poles." Forensic Sci Int Genet 30, 51-56 (2017).
  44. ^ Jiang,C., Cui,J., Liu,F., Gao,L., Luo,Y., Li,P., Guan,L. and Gao,Y., "Mitochondrial DNA 10609T Promotes Hypoxia-Induced Increase of Intracellular ROS and Is a Risk Factor of High Altitude Polycythemia." PLoS ONE 9 (1), E87775 (2014).
  45. ^ Fuyun Ji, Mark S. Sharpley, Olga Derbeneva, et al., "Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans." PNAS May 8, 2012 109 (19) 7391-7396; https://doi.org/10.1073/pnas.1202484109.
  46. ^ Kutanan, Wibhu; Kampuansai, Jatupol; Changmai, Piya; et al. (2018). "Contrasting maternal and paternal genetic variation of hunter-gatherer groups in Thailand". Scientific Reports. 8 (1): 1536. Bibcode:2018NatSR...8.1536K. doi:10.1038/s41598-018-20020-0. PMC 5784115. PMID 29367746.
  47. ^ Kong, Q.P.; Yao, Y.G.; Sun, C.; Bandelt, H.J.; Zhu, C.L.; Zhang, Y.P. (2003). "Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences". Am. J. Hum. Genet. 73 (3): 671–676. doi:10.1086/377718. PMC 1180693. PMID 12870132.
  48. ^ Zhang,A.M., Bandelt,H.J., Jia,X., Zhang,W., Li,S., Yu,D., Wang,D., Zhuang,X.Y., Zhang,Q., and Yao,Y.G., "Is Mitochondrial tRNA Variant m.593T>C a Synergistically Pathogenic Mutation in Chinese LHON Families with m.11778G>A?" PLoS ONE 6 (10), E26511 (2011).
  49. ^ Wang, C.Y.; Wang, H.W.; Yao, Y.G.; Kong, Q.P.; Zhang, Y.P. (2007). "Somatic mutations of mitochondrial genome in early stage breast cancer". Int. J. Cancer. 121 (6): 1253–1256. doi:10.1002/ijc.22822. PMID 17514652. S2CID 36734968.
  50. ^ Gates Jr., Henry Louis (2010). Faces of America: How 12 Extraordinary People Discovered Their Pasts. New York University Press. p. 104.
  51. ^ Finding Your Roots. Season 1. Episode 10. 2012-05-20. PBS.

Bibliography

[edit]
[edit]