Jump to content

M. Joan Alexander

From Wikipedia, the free encyclopedia
M. Joan Alexander
Alma materUniversity of Colorado, Boulder
Scientific career
ThesisThe Venus 130-nm dayglow as a diagnostic of thermospherica structure and dynamics (1992)

M. Joan Alexander is an atmospheric scientist known for her research on gravity waves and their role in atmospheric circulation.

Education and career

[edit]

Alexander earned a B.S. in chemistry from Purdue University in 1981 and a M.S. in Astrophysical, Planetary & Atmospheric Sciences from University of Colorado, Boulder in 1989.[1] She then completed her Ph.D. in Astrophysical, Planetary & Atmospheric Sciences in 1992 from the University of Colorado, Boulder.[2]

Following her Ph.D., Alexander worked at Hughes Aircraft Company, Great Lakes Chemical Company, Martin Marietta Aerospace Corporation before moving to the University of Colorado, Boulder as a Research Assistant in 1987. In 1992 she moved to the University of Washington, first as postdoctoral faculty (1992-1994) and then as a research assistant professor. In 1998 she joined NorthWest Research Associates where she is a senior research scientist;[3] she also holds the position of Professor Adjoint at the University of Colorado, Boulder.[4]

From 2004 to 2006, Alexander was the president of the Atmospheric Sciences section of the American Geophysical Union.[5]

Research

[edit]

Alexander's research interests include atmospheric dynamics, waves, convection, global circulation modeling, mesoscale modeling, satellite, aircraft, balloon-borne observations, and middle atmosphere studies.[6] Alexander's early research examined changes in atomic oxygen in the atmospheres of Venus [7] and Mars.[8] Following this period, she began examining waves in the atmosphere such as high-frequency gravity waves formed during storms.[9][10] She also established the conditions to adequately characterize gravity waves in the stratosphere,[11] how to parameterize gravity waves in climate models,[12] and how satellite imagery can be used to track atmospheric gravity waves.[13][14] Through this research, Alexander is able to link gravity waves with climate modeling[15][16] and modeling of storms.[17]

Alexander's research uses high altitude balloons that circle the globe in the stratosphere and collect data on the air and winds.[18] In 2020, Alexander received funding from the National Science Foundation to use data from balloons being launched by Loon LLC to provide internet service; the high resolution data from the balloons will allow Alexander and colleagues to track gravity waves in the atmosphere and use the resulting data to improve weather and climate models.[19][20]

Selected publications

[edit]

Awards

[edit]

References

[edit]
  1. ^ "Vitae". www.cora.nwra.com. Retrieved 2020-12-05.
  2. ^ Alexander, M. Joan (1992). The Venus 130-nm dayglow as a diagnostic of thermosphericastructure and dynamics (Thesis).
  3. ^ "M. Joan Alexander". www.cora.nwra.com. Retrieved 2021-06-28.
  4. ^ "M. Joan Alexander". Atmospheric and Oceanic Sciences. 2015-06-12. Retrieved 2021-06-28.
  5. ^ "About - Atmospheric Sciences". connect.agu.org. Retrieved 2021-06-28.
  6. ^ "Vitae". www.cora.nwra.com. Retrieved 2020-12-05.
  7. ^ Alexander, M. J.; Stewart, A. I. F.; Solomon, S. C.; Boucher, S. W. (1993). "Local time asymmetries in the Venus thermosphere". Journal of Geophysical Research: Planets. 98 (E6): 10849–10871. Bibcode:1993JGR....9810849A. doi:10.1029/93JE00538. hdl:2060/19930005102. ISSN 2156-2202.
  8. ^ Stewart, A. I. F.; Alexander, M. J.; Meier, R. R.; Paxton, L. J.; Bougher, S. W.; Fesen, C. G. (1992). "Atomic oxygen in the Martian thermosphere". Journal of Geophysical Research: Space Physics. 97 (A1): 91–102. Bibcode:1992JGR....97...91S. doi:10.1029/91JA02489. ISSN 2156-2202.
  9. ^ Alexander, M. J.; Holton, J. R.; Durran, D. R. (1995-06-15). "The Gravity Wave Response above Deep Convection in a Squall Line Simulation". Journal of the Atmospheric Sciences. 52 (12): 2212–2226. Bibcode:1995JAtS...52.2212A. doi:10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2. hdl:2060/19960048434. ISSN 0022-4928. S2CID 122955810.
  10. ^ Alexander, M. J.; Holton, J. R. (1997-02-01). "A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves". Journal of the Atmospheric Sciences. 54 (3): 408–419. Bibcode:1997JAtS...54..408A. doi:10.1175/1520-0469(1997)054<0408:AMSOZF>2.0.CO;2. hdl:2060/19980019499. ISSN 0022-4928.
  11. ^ Alexander, M. J. (1998). "Interpretations of observed climatological patterns in stratospheric gravity wave variance". Journal of Geophysical Research: Atmospheres. 103 (D8): 8627–8640. Bibcode:1998JGR...103.8627A. doi:10.1029/97JD03325. ISSN 2156-2202.
  12. ^ Alexander, M. J.; Dunkerton, T. J. (1999-12-01). "A Spectral Parameterization of Mean-Flow Forcing due to Breaking Gravity Waves". Journal of the Atmospheric Sciences. 56 (24): 4167–4182. Bibcode:1999JAtS...56.4167A. doi:10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2. ISSN 0022-4928.
  13. ^ Alexander, M. Joan; Barnet, Christopher (2007-05-01). "Using Satellite Observations to Constrain Parameterizations of Gravity Wave Effects for Global Models". Journal of the Atmospheric Sciences. 64 (5): 1652–1665. Bibcode:2007JAtS...64.1652A. doi:10.1175/JAS3897.1. ISSN 0022-4928. S2CID 21745852.
  14. ^ Alexander, M. J.; Gille, J.; Cavanaugh, C.; Coffey, M.; Craig, C.; Eden, T.; Francis, G.; Halvorson, C.; Hannigan, J.; Khosravi, R.; Kinnison, D. (2008). "Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations". Journal of Geophysical Research: Atmospheres. 113 (D15). Bibcode:2008JGRD..11315S18A. doi:10.1029/2007JD008807. ISSN 2156-2202.
  15. ^ Alexander, M. J.; Geller, M.; McLandress, C.; Polavarapu, S.; Preusse, P.; Sassi, F.; Sato, K.; Eckermann, S.; Ern, M.; Hertzog, A.; Kawatani, Y. (2010). "Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models". Quarterly Journal of the Royal Meteorological Society. 136 (650): 1103–1124. Bibcode:2010QJRMS.136.1103A. doi:10.1002/qj.637. hdl:11336/16993. ISSN 1477-870X. S2CID 33500010.
  16. ^ Alexander, M. J. (1998). "Interpretations of observed climatological patterns in stratospheric gravity wave variance". Journal of Geophysical Research: Atmospheres. 103 (D8): 8627–8640. Bibcode:1998JGR...103.8627A. doi:10.1029/97JD03325. ISSN 2156-2202.
  17. ^ Alexander, M. J.; Holton, J. R.; Durran, D. R. (1995-06-15). "The Gravity Wave Response above Deep Convection in a Squall Line Simulation". Journal of the Atmospheric Sciences. 52 (12): 2212–2226. Bibcode:1995JAtS...52.2212A. doi:10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2. hdl:2060/19960048434. ISSN 0022-4928. S2CID 122955810.
  18. ^ Haase, Jennifer; Alexander, M.; Hertzog, Albert; Kalnajs, Lars; Deshler, Terry; Davis, Sean; Plougonven, Riwal; Cocquerez, Philippe; Venel, Stephanie (2018). "Around the World in 84 Days" (PDF). Eos. 99. doi:10.1029/2018eo091907. S2CID 134743610.
  19. ^ "Literal rise of the internet enables new climate science". EurekAlert!. Retrieved 2021-06-28.
  20. ^ "NSF Award Search: Award # 2004512 - Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning". www.nsf.gov. Retrieved 2021-06-28.
  21. ^ "Jacob Bjerknes Lecture | AGU". www.agu.org. Retrieved 2021-06-27.
  22. ^ "List of Fellows". American Meteorological Society. Retrieved 2021-06-27.
  23. ^ "American Geophysical Union Announces 2017 Fellows". AGU Newsroom. Retrieved 2020-12-05.
  24. ^ "Alexander". Honors Program. Retrieved 2021-06-28.
[edit]