Manfred Hallschmid (academic)
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Manfred Hallschmid is a German academic who is Professor (W3) of Behavioral Neurobiology at the Department of Medical Psychology and Behavioral Neurobiology of the University of Tübingen, Germany. He obtained his PhD in psychology/human biology in 2005 and received awards by the German Society of Psychology,[citation needed] the German Society of Endocrinology,[citation needed] and the German Diabetes Society.[citation needed] Hallschmid’s primary research area is the central nervous regulation of energy fluxes in humans, with a focus on the role of neuropeptidergic messengers for metabolic control, as well as on the relationship between sleep, food intake and cognition.
Research
[edit]Hallschmid’s work includes studies on the role of oxytocin in food intake control, on brain effects of insulin, on the role of sleep for metabolic regulation, and on cognitive control as a target of neuromodulation-based interventions to improve eating behavior. His studies were among the first to provide evidence for a critical role of sex differences in central nervous insulin effects in humans, and to show that oxytocin, a hormone predominantly known for its psychosocial effects, regulates eating behavior in humans. Hallschmid’s research ranges from experiments in healthy humans to clinical populations to animal models and highlights the crucial links between metabolism and brain health.
His group showed that after intranasal administration, oxytocin markedly curbs primarily reward-driven (hedonic) calorie intake: in comparison to placebo, oxytocin reduced the consumption of chocolate cookies by 25%.[1] Remarkably, the potential of acutely administered oxytocin to reduce food intake appears to be even more pronounced in males with increased body weight.[2] In related experiments,[3] oxytocin’s acute contribution to glucose homeostasis was studied in healthy, fasted male individuals. Intranasal oxytocin attenuated the peak excursion of plasma glucose and augmented the early increases in insulin and C-peptide concentrations in response to an oral glucose tolerance test while slightly blunting insulin and C-peptide peaks. Oral minimal model analyses revealed that oxytocin, compared with placebo, induced a pronounced increase in β-cell responsivity. These results highlight the role of oxytocin in the acute regulation of glucose metabolism in humans and support the conclusion that the oxytocin system may be a target of antidiabetic treatment. Still, results obtained in individuals with obesity[4] or type 2 diabetes[5] indicate that oxytocin administration is less effective in individuals with chronically impaired insulin sensitivity.
Hallschmid’s studies on the brain impact of insulin revealed that the hormone, when administered via the intranasal route,[6] reduces food intake[7] and, across longer intervention periods, body weight[8] in healthy, normal-weight male individuals. These findings were among the first to confirm in humans the concept that insulin, like leptin, provides the brain with negative feedback on energy stored as body fat and thereby contributes to the regulation of food intake. In a parallel line of work, Hallschmid, together with Christian Benedict, investigated the potential of intranasal insulin to improve memory function in humans,[9] a topic of particular interest in the context of memory impairments like Alzheimer’s disease.[10] Notably, Hallschmid’s findings suggest that the role of brain insulin in food intake control may be more relevant in males than females, underlining the role of sex differences for brain functions and metabolic control. In further experiments, Hallschmid and coworkers investigated brain insulin sensitivity in postmenopausal females[11] and the interplay between estrogen and insulin in food intake control[12] and memory function.[13] These studies open up avenues for future research into sex-specific differences in hormonal influences on cognition. With colleagues at the University of Tübingen, Hallschmid is currently exploring the nuanced complexities of sex and gender differences in brain function.[14]
While Hallschmid’s research also tackles topics like hedonic hunger in obesity[15] and how to normalize hunger in individuals with increased body weight with the help of fMRI neurofeedback,[16] his studies have moreover added significant insights into the role of sleep for the control of eating behavior and peripheral metabolism.[17][18] Work by Hallschmid and colleagues has, for example, shown that sleep contributes to the formation of metabolic memory because sleep deprivation prevents the adaptation of the counterregulatory response to recurrent hypoglycemia.[19] Together with Jan Born, he demonstrated that slow-wave sleep, which predominantly occurs during the first night-half, renormalizes the strength of synaptic connections in the hypothalamus and, thereby, likely supports homeostatic control processes.[20] On the other hand, pilot experiments indicate that – in healthy men – intensifying sleep slow oscillations does not acutely improve metabolic control.[21] With a view to women’s mental health across the reproductive years, Hallschmid’s group came up with good news for expecting women by showing that, despite popular beliefs about the “baby brain”, sleep-associated memory formation is not impaired during the third trimester of pregnancy.[22]
References
[edit]- ^ Ott, Volker; Finlayson, Graham; Lehnert, Hendrik; Heitmann, Birte; Heinrichs, Markus; Born, Jan; Hallschmid, Manfred (2013-10-01). "Oxytocin Reduces Reward-Driven Food Intake in Humans". Diabetes. 62 (10): 3418–3425. doi:10.2337/db13-0663. ISSN 0012-1797. PMC 3781467. PMID 23835346.
- ^ Thienel, M; Fritsche, A; Heinrichs, M; Peter, A; Ewers, M; Lehnert, H; Born, J; Hallschmid, M (November 2016). "Oxytocin's inhibitory effect on food intake is stronger in obese than normal-weight men". International Journal of Obesity. 40 (11): 1707–1714. doi:10.1038/ijo.2016.149. ISSN 0307-0565. PMC 5116063. PMID 27553712.
- ^ Klement, Johanna; Ott, Volker; Rapp, Kristina; Brede, Swantje; Piccinini, Francesca; Cobelli, Claudio; Lehnert, Hendrik; Hallschmid, Manfred (2017-02-01). "Oxytocin Improves β-Cell Responsivity and Glucose Tolerance in Healthy Men". Diabetes. 66 (2): 264–271. doi:10.2337/db16-0569. ISSN 0012-1797. PMID 27554476.
- ^ Brede, Swantje; Fehr, Sebastian; Dalla-Man, Chiara; Cobelli, Claudio; Lehnert, Hendrik; Hallschmid, Manfred; Klement, Johanna (February 2019). "Intranasal oxytocin fails to acutely improve glucose metabolism in obese men". Diabetes, Obesity and Metabolism. 21 (2): 424–428. doi:10.1111/dom.13527. ISSN 1462-8902. PMID 30203536.
- ^ Goll, Nina; Moszka, Nina; Kantartzis, Konstantinos; Preissl, Hubert; Gruber, Tim; Fritsche, Louise; Jumpertz-von Schwarzenberg, Reiner; García-Cáceres, Cristina; Fritsche, Andreas; Hallschmid, Manfred (October 2024). "Oxytocin does not acutely improve glucose tolerance in men with type 2 diabetes". Diabetes, Obesity and Metabolism. 26 (10): 4562–4570. doi:10.1111/dom.15812. ISSN 1462-8902. PMID 39118203.
- ^ Hallschmid, Manfred (April 2021). "Intranasal insulin". Journal of Neuroendocrinology. 33 (4): e12934. doi:10.1111/jne.12934. ISSN 0953-8194. PMID 33506526.
- ^ Benedict, Christian; Kern, Werner; Schultes, Bernd; Born, Jan; Hallschmid, Manfred (April 2008). "Differential Sensitivity of Men and Women to Anorexigenic and Memory-Improving Effects of Intranasal Insulin". The Journal of Clinical Endocrinology & Metabolism. 93 (4): 1339–1344. doi:10.1210/jc.2007-2606. ISSN 0021-972X. PMID 18230654.
- ^ Hallschmid, Manfred; Benedict, Christian; Schultes, Bernd; Fehm, Horst-Lorenz; Born, Jan; Kern, Werner (2004-11-01). "Intranasal Insulin Reduces Body Fat in Men but not in Women". Diabetes. 53 (11): 3024–3029. doi:10.2337/diabetes.53.11.3024. ISSN 0012-1797. PMID 15504987.
- ^ Benedict, C (November 2004). "Intranasal insulin improves memory in humans". Psychoneuroendocrinology. 29 (10): 1326–1334. doi:10.1016/j.psyneuen.2004.04.003. PMID 15288712.
- ^ Hallschmid, Manfred (January 2021). "Intranasal Insulin for Alzheimer's Disease". CNS Drugs. 35 (1): 21–37. doi:10.1007/s40263-020-00781-x. ISSN 1172-7047. PMC 7873098. PMID 33515428.
- ^ Krug, Rosemarie; Benedict, Christian; Born, Jan; Hallschmid, Manfred (2010-12-01). "Comparable Sensitivity of Postmenopausal and Young Women to the Effects of Intranasal Insulin on Food Intake and Working Memory". The Journal of Clinical Endocrinology & Metabolism. 95 (12): E468 – E472. doi:10.1210/jc.2010-0744. ISSN 0021-972X. PMID 20719831.
- ^ Krug, Rosemarie; Mohwinkel, Linda; Drotleff, Bernhard; Born, Jan; Hallschmid, Manfred (2018-04-01). "Insulin and Estrogen Independently and Differentially Reduce Macronutrient Intake in Healthy Men". The Journal of Clinical Endocrinology & Metabolism. 103 (4): 1393–1401. doi:10.1210/jc.2017-01835. ISSN 0021-972X. PMID 29342258.
- ^ Krug, Rosemarie; Beier, Laura; Lämmerhofer, Michael; Hallschmid, Manfred (2022-01-18). "Distinct and Convergent Beneficial Effects of Estrogen and Insulin on Cognitive Function in Healthy Young Men". The Journal of Clinical Endocrinology & Metabolism. 107 (2): e582 – e593. doi:10.1210/clinem/dgab689. ISSN 0021-972X. PMC 8764344. PMID 34534317.
- ^ Derntl, Birgit; Hage, Steffen R.; Hallschmid, Manfred (March 2024). "Making Sense of Sex in Neuroscience". Biological Psychiatry Global Open Science. 4 (2): 100292. doi:10.1016/j.bpsgos.2024.100292. PMC 10945429. PMID 38501116.
- ^ Schultes, Bernd; Ernst, Barbara; Wilms, Britta; Thurnheer, Martin; Hallschmid, Manfred (August 2010). "Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery". The American Journal of Clinical Nutrition. 92 (2): 277–283. doi:10.3945/ajcn.2009.29007. PMID 20519559.
- ^ Kohl, Simon H.; Veit, Ralf; Spetter, Maartje S.; Günther, Astrid; Rina, Andriani; Lührs, Michael; Birbaumer, Niels; Preissl, Hubert; Hallschmid, Manfred (May 2019). "Real-time fMRI neurofeedback training to improve eating behavior by self-regulation of the dorsolateral prefrontal cortex: A randomized controlled trial in overweight and obese subjects". NeuroImage. 191: 596–609. doi:10.1016/j.neuroimage.2019.02.033. PMID 30798010.
- ^ Benedict, Christian; Kern, Werner; Schmid, Sebastian M.; Schultes, Bernd; Born, Jan; Hallschmid, Manfred (April 2009). "Early morning rise in hypothalamic–pituitary–adrenal activity: A role for maintaining the brain's energy balance". Psychoneuroendocrinology. 34 (3): 455–462. doi:10.1016/j.psyneuen.2008.10.010. PMID 19038501.
- ^ Schmid, Sebastian M; Hallschmid, Manfred; Schultes, Bernd (January 2015). "The metabolic burden of sleep loss". The Lancet Diabetes & Endocrinology. 3 (1): 52–62. doi:10.1016/S2213-8587(14)70012-9. PMID 24731536.
- ^ Meyhöfer, Svenja; Dembinski, Katharina; Schultes, Bernd; Born, Jan; Wilms, Britta; Lehnert, Hendrik; Hallschmid, Manfred; Meyhöfer, Sebastian M. (July 2022). "Sleep deprivation prevents counterregulatory adaptation to recurrent hypoglycaemia". Diabetologia. 65 (7): 1212–1221. doi:10.1007/s00125-022-05702-9. ISSN 0012-186X. PMC 9174142. PMID 35445819.
- ^ Liu, Jianfeng; Niethard, Niels; Lun, Yu; Dimitrov, Stoyan; Ehrlich, Ingrid; Born, Jan; Hallschmid, Manfred (2024-08-20). Yang, Guang (ed.). "Slow-wave sleep drives sleep-dependent renormalization of synaptic AMPA receptor levels in the hypothalamus". PLOS Biology. 22 (8): e3002768. doi:10.1371/journal.pbio.3002768. ISSN 1545-7885. PMC 11364421. PMID 39163472.
- ^ Santiago, João C.P.; Ngo, Hong-Viet; Jickeli, Carola; Peter, Andreas; Hallschmid, Manfred (January 2019). "Intensifying sleep slow oscillations does not improve metabolic control in healthy men". Psychoneuroendocrinology. 99: 1–7. doi:10.1016/j.psyneuen.2018.08.028. PMID 30172070.
- ^ Zinke, Katharina; Lehnert, Vanessa; Fritsche, Andreas; Preissl, Hubert; Hallschmid, Manfred (June 2021). "Pregnant women do not display impaired memory formation across one night of sleep". Journal of Sleep Research. 30 (3): e13204. doi:10.1111/jsr.13204. ISSN 0962-1105. PMID 32985760.