Jump to content

Rule-based machine learning

From Wikipedia, the free encyclopedia

Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply.[1][2][3] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system.

Rule-based machine learning approaches include learning classifier systems,[4] association rule learning,[5] artificial immune systems,[6] and any other method that relies on a set of rules, each covering contextual knowledge.

While rule-based machine learning is conceptually a type of rule-based system, it is distinct from traditional rule-based systems, which are often hand-crafted, and other rule-based decision makers. This is because rule-based machine learning applies some form of learning algorithm such as Rough sets theory[7] to identify and minimise the set of features and to automatically identify useful rules, rather than a human needing to apply prior domain knowledge to manually construct rules and curate a rule set.

Rules

[edit]

Rules typically take the form of an '{IF:THEN} expression', (e.g. {IF 'condition' THEN 'result'}, or as a more specific example, {IF 'red' AND 'octagon' THEN 'stop-sign}). An individual rule is not in itself a model, since the rule is only applicable when its condition is satisfied. Therefore rule-based machine learning methods typically comprise a set of rules, or knowledge base, that collectively make up the prediction model usually know as decision algorithm. Rules can also be interpreted in various ways depending on the domain knowledge, data types(discrete or continuous) and in combinations.

See also

[edit]

References

[edit]
  1. ^ Bassel, George W.; Glaab, Enrico; Marquez, Julietta; Holdsworth, Michael J.; Bacardit, Jaume (2011-09-01). "Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets". The Plant Cell. 23 (9): 3101–3116. Bibcode:2011PlanC..23.3101B. doi:10.1105/tpc.111.088153. ISSN 1532-298X. PMC 3203449. PMID 21896882.
  2. ^ M., Weiss, S.; N., Indurkhya (1995-01-01). "Rule-based Machine Learning Methods for Functional Prediction". Journal of Artificial Intelligence Research. 3 (1995): 383–403. arXiv:cs/9512107. Bibcode:1995cs.......12107W. doi:10.1613/jair.199. S2CID 1588466.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ "GECCO 2016 | Tutorials". GECCO 2016. Retrieved 2016-10-14.
  4. ^ Urbanowicz, Ryan J.; Moore, Jason H. (2009-09-22). "Learning Classifier Systems: A Complete Introduction, Review, and Roadmap". Journal of Artificial Evolution and Applications. 2009: 1–25. doi:10.1155/2009/736398. ISSN 1687-6229.
  5. ^ Zhang, C. and Zhang, S., 2002. Association rule mining: models and algorithms. Springer-Verlag.
  6. ^ De Castro, Leandro Nunes, and Jonathan Timmis. Artificial immune systems: a new computational intelligence approach. Springer Science & Business Media, 2002.
  7. ^ ISBN 978-0-7923-1472-1.