Jump to content

Simple precedence parser

From Wikipedia, the free encyclopedia

In computer science, a simple precedence parser is a type of bottom-up parser for context-free grammars that can be used only by simple precedence grammars.

The implementation of the parser is quite similar to the generic bottom-up parser. A stack is used to store a viable prefix of a sentential form from a rightmost derivation. The symbols ⋖, ≐ and ⋗ are used to identify the pivot, and to know when to Shift or when to Reduce.

Implementation

[edit]
  • Compute the Wirth–Weber precedence relationship table for a grammar with initial symbol S.
  • Initialize a stack with the starting marker $.
  • Append an ending marker $ to the string being parsed (Input).
  • Until Stack equals "$ S" and Input equals "$"
    • Search the table for the relationship between Top(stack) and NextToken(Input)
    • if the relationship is ⋖ or ≐
      • Shift:
      • Push(Stack, relationship)
      • Push(Stack, NextToken(Input))
      • RemoveNextToken(Input)
    • if the relationship is ⋗
      • Reduce:
      • SearchProductionToReduce(Stack)
      • Remove the Pivot from the Stack
      • Search the table for the relationship between the nonterminal from the production and first symbol in the stack (Starting from top)
      • Push(Stack, relationship)
      • Push(Stack, Non terminal)

SearchProductionToReduce (Stack)

  • Find the topmost ⋖ in the stack; this and all the symbols above it are the Pivot.
  • Find the production of the grammar which has the Pivot as its right side.

Example

[edit]

Given following language, which can parse arithmetic expressions with the multiplication and addition operations:

E  --> E + T' | T'
T' --> T
T  --> T * F  | F
F  --> ( E' ) | num
E' --> E

num is a terminal, and the lexer parse any integer as num; E represents an arithmetic expression, T is a term and F is a factor.

and the Parsing table:

E E' T T' F + * ( ) num $
E
E'
T
T'
F
+
*
(
)
num
$
STACK PRECEDENCE INPUT ACTION
$ 2 * ( 1 + 3 )$ SHIFT
$ ⋖ 2 * ( 1 + 3 )$ REDUCE (F -> num)
$ ⋖ F * ( 1 + 3 )$ REDUCE (T -> F)
$ ⋖ T * ( 1 + 3 )$ SHIFT
$ ⋖ T ≐ * ( 1 + 3 )$ SHIFT
$ ⋖ T ≐ * ⋖ ( 1 + 3 )$ SHIFT
$ ⋖ T ≐ * ⋖ ( ⋖ 1 + 3 )$ REDUCE 4× (F -> num) (T -> F) (T' -> T) (E ->T ')
$ ⋖ T ≐ * ⋖ ( ⋖ E + 3 )$ SHIFT
$ ⋖ T ≐ * ⋖ ( ⋖ E ≐ + 3 )$ SHIFT
$ ⋖ T ≐ * ⋖ ( ⋖ E ≐ + < 3 )$ REDUCE 3× (F -> num) (T -> F) (T' -> T)
$ ⋖ T ≐ * ⋖ ( ⋖ E ≐ + ≐ T )$ REDUCE 2× (E -> E + T) (E' -> E)
$ ⋖ T ≐ * ⋖ ( ≐ E' )$ SHIFT
$ ⋖ T ≐ * ⋖ ( ≐ E' ≐ ) $ REDUCE (F -> ( E' ))
$ ⋖ T ≐ * ≐ F $ REDUCE (T -> T * F)
$ ⋖ T $ REDUCE 2× (T' -> T) (E -> T')
$ ⋖ E $ ACCEPT

References

[edit]
  • Alfred V. Aho, Jeffrey D. Ullman (1977). Principles of Compiler Design. 1st Edition. Addison–Wesley.
  • William A. Barrett, John D. Couch (1979). Compiler construction: Theory and Practice. Science Research Associate.
  • Jean-Paul Tremblay, P. G. Sorenson (1985). The Theory and Practice of Compiler Writing. McGraw–Hill.