Talk:Banach–Tarski paradox/Archive 1
This is an archive of past discussions about Banach–Tarski paradox. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. |
Archive 1 | Archive 2 | Archive 3 |
end of proof
I removed the last part from the proof, it is a sketch, not a prrof and I think such details should not be covered. Tosha 01:49, 5 May 2004 (UTC)
By the way, there is a new page Hausdorff paradox. I don't feel qualified to work on the content; but it is clearly very close to this page. If this is becoming a featured article candidate, perhaps including tha material might make this page more complete.
Charles Matthews 07:57, 5 May 2004 (UTC)
Similar Result
I remember reading somewhere about a similar result, the name of which I can't remember. I don't know if the two are related theoretically, but they remind me of each other. The other result says that a set of points exists in euclidean space such that the projections of the set onto different planes can produce any set of 2 dimensional images you want. Does anyone know the name of this, or has anyone even heard of it at all? It seems like a link from this article to one on this other result might be useful. --Monguin61 10:00, 10 December 2005 (UTC)
- If anyone else is interested, the idea I was remembering was the digital sundial. Wikipedia's entry on sundials has an external link to the patent of an actual digital sundial, and as of now they are available for purchase from www.digitalsundial.com. The design of the physical device was the result of the work of one K. Falconer, and the idea is described, presumably in more detail, in his book on fractal geometry. --Monguin61 01:23, 15 December 2005 (UTC)
On hyphenated hyper-2-tuples
- JA: You know I really hate being so WikiPiki, but there's supposedly a good reason to use ndashes instead of hyphens in names that refer to multiple persons rather than multiple ancestors of one person, so Banach-Tarski paradox should be Banach–Tarski paradox, and Hausdorff-Banach-Tarski paradox should be Hausdorff–Banach–Tarski paradox, and so on. I would move the article ¼-with myself, but there's already a redirect from Banach–Tarski paradox to Banach-Tarski paradox, so it takes an admin-assisted deletion of Banach-Tarski paradox to do that. Are you beginning to understand how the same content can get itself redistributed across two identical contents now? Jon Awbrey 16:02, 9 March 2006 (UTC)
- I went ahead and moved it (no admin assistance required). You can't move an article onto another real article, but you can move article A onto article B when B is a redirect to A, unless B has some other history. Not sure what the rule is if B has at some point been a redirect to C. --Trovatore 17:13, 9 March 2006 (UTC)
S(a)
As I understand the definitions of in the section about paradox decomposition, we mean . Now note that there exist strings in which start with "aa..." which means that by we would get the whole free group back and not only the part without as indicated by the picture. To point this out: --74.236.150.135
- If the first letter is , then the second letter can't be (because we're talking about words in reduced form). So doesn't contain any words starting with . Note that the picture shows as the complement of , not the complement of . --Zundark 10:38, 27 November 2006 (UTC)
BTP & arguments against axiom of choice
The usual argument against the idea that the BTP genuinely undermines the plausibility of the axiom of choice, is that the axiom of choice allows one to construct non-measurable subsets, which it is wrong to regard as "pieces" of the original ball: instead they interleave with each other to an infinitesimally fine degree, allowing a trick rather similar to Russell's Hotel to be carried out. What's puzzling is the intrusion of a paradox of the infinite into what at first glance appeared to be a statement of geometry.
I'm not applying an edit directly, because this issue has ramifications elsewhere, and I haven';t time to properly formulate the text right now. Changes are needed:
- cut it up into finitely many pieces -- very misleading description
- it is a paradox only in the sense of being counter-intuitive. Because its proof prominently uses the axiom of choice, this counter-intuitive conclusion has been presented as an argument against adoption of that axiom. -- needs counterargument here
- Changes needed in AofC page ---- Charles Stewart 20:07, 1 Sep 2004 (UTC)
- I agree, but it was better, it is all result of the second edit of ArnoldReinhold, so I have reverted it and added all later changes. Tosha 04:06, 2 Sep 2004 (UTC)
- I think I've maybe not made my complaint clear: the article begins with an description of the TBP that is couched in intuitive but contentious terms: people who say the resolution of the paradox is that our intuitions about cutting up solids and applying spatial transformations only applies to measurable connected subsets (as indeed I do) will object to the way the topic is framed; the reversion hasn't changed much. I'm not going to have much time for wikiing in the next ten days, but I plan on applying some changes then. ---- Charles Stewart 09:07, 2 Sep 2004 (UTC)
I wonder if replacing "cut it up into" with "divide it into" would be clearer, since the division isn't a knife cut style topological division. I also think the last sentence of the introduction starting "actually, as explained below" is confusing and arguably not neutral, since the previous sentence provides both points of view. Any objections to replacing that phrase and deleting that sentence? Warren Dew 23:53, 12 March 2007 (UTC)
Curiosity
I came across an interesting anagram of "BANACH TARSKI".
It's "BANACH TARSKI BANACH TARSKI". —Ashley Y 10:45, 2004 Jul 9 (UTC)
Improving the text
This is a fantastic article, with quite accessible proof of the Banach–Tarski theorem about doubling the ball! Unfortunately, there are some inaccuracies and OR statements scattered around. For example, after reading Banach and Tarski's paper, I didn't get the impression that they intended it to somehow undercut the axiom of choice, as the text had claimed (hence I've removed that sentence). What they say is that
- Le rôle que joue cet axiome dans nos raisonnements nous semble mériter l'attention
and go on remarking how for two key results of their paper, the proof of the first uses the axiom of choice in a much weaker way then the proof of the second.
I also regret that a clear explanation of the difference between one and two dimensional Euclidean spaces (where a paradoxical decomposition of this type is impossible) and the higher dimensional cases, related to amenability of the Euclidean group in low dimensions and non-amenability in high dimensions, is missing. While it is more relevant for the general theory of paradoxical decompositions, it seems prudent to have at least one section on this in the present article. Arcfrk 02:54, 3 September 2007 (UTC)
- I've made substantial revisions, in particular, adding references to amenability in a few places. Arcfrk 09:50, 3 September 2007 (UTC)
Doing the decomposition physically
In a recient article in the Journal of Symbolic Logic, Trevor M. Wilson titled "A continuous movement version of the Banach—Tarski paradox: A solution to de Groot's Problem", it was proved that the dissaembly and reassembly of the balls can be performed by continuously and rigidly moving the pieces without the pieces ever intersecting at any point in time. Should this fact be mentioned and referenced? --Ramsey2006 22:46, 13 October 2006 (UTC)
- The pieces themselves are still infinitely convoluted and cannot actually be constructed physically (atoms are of a finite size, after all). So this still doesn't get anywhere near doing the decomposition "physically". But the fact that they can be translated, rotated, and reassembled without ever intersecting may be worth the mention.—Tetracube 06:01, 15 October 2006 (UTC)
Done. I also removed a confused paragraph about it not being a real paradox, which in addition to being dubious was also in a completely inappropriate section. --Trovatore 06:40, 15 October 2006 (UTC)
- I've changed the intro sentence to say "finitely many infinitely convoluted non-overlapping point sets", rather than "finitely many pieces" -- I think the core of the paradox is that the term "pieces" is misleading, since the normal common-sense intuitions regarding volume and solidity no longer apply to point sets of the type required. Although this wording is slightly awkward, I think it's appropriate in this case, because it avoids the far greater confusion that the use of the simple but misleading word "pieces" would generate, and the meaning is fully explained a couple of paragraphs below. -- Gigacephalus 08:25, 13 November 2007 (UTC)
- I like the use of "point sets", at least in conjunction with the rest of the edits you did. I may break the first sentence into two in order to allow people to get a bit futher into the article before taking on much math.Warren Dew 21:37, 13 November 2007 (UTC)
exposition of Pawlikowski result could be misleading
The article currently says
- In 1991, Janusz Pawlikowski proved that the Banach-Tarski paradox follows from ZF plus the Hahn-Banach theorem. The Hahn-Banach theorem doesn't rely on the full axiom of choice but can be proven using a weaker version of AC called the ultrafilter lemma. So Pawlikowski proved that the set theory needed to prove the Banach-Tarski paradox, while stronger than ZF, is weaker than full ZFC.
This phrasing, while it doesn't actually say so, kind of makes it sound as though it wasn't known before 1991 that full AC is not needed to prove Banach–Tarski. That is surely not the case. It's obvious from even a high-level description of the proof that the key use of AC is to choose elements from equivalence classes of points in R3 -- that is, essentially reals -- which means it follows from the existence of a wellordering of the reals. And it must have been known since the sixties that it's consistent with ZF that the reals can be wellordered but some larger set (say, the powerset of the reals) cannot.
Any suggestions on how to rephrase, while still getting the valid part of the point across? One possibility would be to find a reference from earlier that specifically mentions that BT is weaker than full AC -- does anyone have one? --Trovatore (talk) 20:44, 20 December 2007 (UTC)
- I see what you mean, I went overboard slightly, sorry. A good place to look for cites of earlier work is probably Pawlikowski's paper itself--does anyone have access? As mentioned in the edit summary I got the cite from the Hahn-Banach talk page (plus Polish wikipedia), though I googled a little more info about the result before making that edit.
Btw what inspired this is I've been wondering for a while whether BT follows from ACA0, which is sort of plausible because Brown and Simpson proved that H-B for separable spaces (which would include R3, I'd expect, but I haven't examined the Brown&Simpson result) follows from WKL0 which I think is even weaker. ACA0 is basically the system of Weyl's "Das Kontinuum" according to Feferman. Warning: what follows after this is total OR and possibly nonsense. But basically these systems are about the minimum needed for doing functional analysis and therefore for doing quantum mechanics. What I'm getting at is that maybe it's hard to axiomatize physics in a way that doesn't lead to BT. So instead of being a weird artifact of set theory, BT becomes in some sense a theorem of physics, a somewhat disturbing notion. 75.62.4.229 (talk) 12:48, 21 December 2007 (UTC) (reworded slightly 18:47, 21 December 2007 (UTC))
- I found and added a pdf link to Pawlikowski's paper (which is just one page long) and a related one. Still not sure how to describe the result's significance. 75.62.4.229 (talk) 21:55, 22 December 2007 (UTC)
no general meaning of explicit construction
The article had claims about the lack of existence of an explicit construction. The proof of the Banach-Tarski decomposition begins by establishing a free action of F2 on the unit sphere, and then asks for a set containing exactly one point from each orbit of the group action. Although last step requires some form of choice, it would still be considered "explicit" by many mathematicians I have met; they would consider the entire proof an explicit construction, although not a canonical one. While it would be possible to make those claims precise by referring to the definability of the decomposition, it isn't accurate to simply say that the construction is nonexplicit, because there is no generally accepted meaning of an explicit construction in mathematics. I rephrased a few sentences to remove the issue. Also, it isn't particularly accurate to talk about 'algorithms' when discussing constructions in set theory; it confuses set-theoretic constructions with computable constructions. — Carl (CBM · talk) 15:54, 14 January 2008 (UTC)
- These fairly charged statements had been introduced into the article just a few hours earlier, and frankly, I don't quite like most of the changes. Maybe we should just revert to the earlier version? Arcfrk (talk) 20:44, 14 January 2008 (UTC)
- I hope the words are not charged, but neutral. The article before was biased towards the point of view that R is well-orderable. The BT construction is not at all explicit, because it requires a choice of an element from uncountably many sets. There is no algorithm to decide which points are in the sets, nor is there any procedure which allows the sets to be generated by any process other than transfinite induction to the continuum. The construction fails in a model where all subsets of R are measurable, and such models are exactly the same as far as computations or explicitly definable sets are concerned. I wanted to make the article neutral towards different set theory models, especially with regard to models which are probabilistically intuitive, meaning ones where you can consistently talk about choosing real numbers at random. Every time somebody talks about choosing a real numbers at random, they are implicitly imagining a universe where every subset of R has Lebesgue measure.Likebox (talk) 05:56, 15 January 2008 (UTC)
- ("Charged" may not be the best term to use, but it appears that if you eliminated any bias, you've reintroduced a different form of bias and probably in larger quantities.) I am not sure that I get your point concerning algorithmic definability of the BT decomposition (which is not at all the same as "explicitness"), but then I don't have a PhD in Set Theory. The distinctions will likely be lost on the vast majority of the readers. Unfortunately, your edits removed a more plain word discussion of the meaning of the paradox and replaced them with quite technical and fairly polemical statements. The lead is not a good place for that! Arcfrk (talk) 06:15, 15 January 2008 (UTC)
- Sorry, I might not have done a very good job. Perhaps "algorithmic" is better than explict? Just add the language that you feel is best, I was being bold, and perhaps I tilted the article the other way.Likebox (talk) 07:40, 15 January 2008 (UTC)
- I think generally that it's not too controversial that there's no explicit example, but the problem is that the statement itself has no precise agreed meaning. The problem with "algorithmic" is a different one. In most formulations all computable functions from the reals to the reals are continuous, so that there isn't a computable partition of the ball into five nonempty pieces at all, never mind whether you can rearrange them paradoxically. --Trovatore (talk) 07:45, 15 January 2008 (UTC)
- You are right, algorithmic is ridiculous. Maybe the right phrase is "not constructible by joining and intersecting regions"? All I wanted the reader to get is that the sections are scatterings of points, which are constructed by a transfinite induction, not visualizable regions defined by any normal geometric operations.Likebox (talk) 08:01, 15 January 2008 (UTC)
- Well, it's certainly true that you can't do it with any countable collection of anything that could intuitively be described as "knife cuts" (that's a weak consequence of the fact that the pieces can't be Borel sets), and it would be worthwhile to get that point across. But it's tricky to think of any wording that conveys that intuitive idea, and still actually means something mathematically. --Trovatore (talk) 19:29, 15 January 2008 (UTC)
- You're right. I give up. The only ways I can think of to phrase it are convoluted.Likebox (talk) 20:51, 15 January 2008 (UTC)
- Ok, one last try, then I give up.Likebox (talk) 21:20, 15 January 2008 (UTC)
Refimprove tag
I tagged this article with "Refimprove" to call for improved referencing. More use of in-line citations (footnotes) would be appropriate. For example, the first theorem stated is implied to be quote from the 1924 paper that appears in the bibliography below, but it would be appropriate to include a footnote at the location of the quote and to cite the article and its page number. doncram (talk) 22:11, 11 March 2008 (UTC)
- No, that would not be appropriate. A careful exposition of all material appearing in this article is contained in the book of Wagon in the bibliography. The reference to Banach–Tarski paper (a primary source) is included here both for its historical value and because the full paper is freely available. It is not helpful to cite random pages, and I find it most ironic that an article with an abundance of well chosen sources has been tagged as "insufficiently referenced". Arcfrk (talk) 23:09, 11 March 2008 (UTC)
- That isn't a direct quote - note the lack of quotation marks. It's simply a statement of the theorem, set off from the main text. — Carl (CBM · talk) 23:28, 11 March 2008 (UTC)
- I'm sorry if the tag was inappropriate for this article. I only visited because CBM has been engaging in a discussion elsewhere with me, with a degree of bullying that I was beginning to experience as a personal attack, over the fact that I had chosen to put copied text into quotation marks. He was essentially taking the position there that full referencing of quotations is wrong. I wondered what articles CBM works on, and looked at this one that CBM has contributed to. Reading the article it seemed ambiguous to me, but perhaps I projected too much about CBM in assessing that this article was poorly referenced. sincerely, doncram (talk) 17:01, 12 March 2008 (UTC)
Edit on 2008-3-11
I undid an edit by Likebox. There are three specific parts that were undone:
- The claim that the pieces are impossible to describe. This is simply false - the proof of the theorem gives a clear description of what the pieces are.
- The claim that an infinite number of choices is required. Any proof, being finite, will only invoke the axiom of choice finitely many times.
- That Alain Connes dislikes the theorem. This may be worth discussing somewhere, but not at the end of the very first paragraph. The vast majority of working mathematicians accept the axiom of choice, the existence of nonmeasurable sets, etc. A specific quote from Connes would establish context much better, in any case, than a generic reference to a book which is fundamentally about noncommutative geometry, not about the Banach-Tarski paradox. I would look up the quote by Connes if a more specific reference is given.
— Carl (CBM · talk) 15:42, 11 March 2008 (UTC)
- "Infinitely many choices" doesn't mean "infinitely many uses of AC", it just means "at least one use of AC". (If there were only finitely many choices, AC wouldn't be needed.) --Zundark (talk) 16:06, 11 March 2008 (UTC)
- Indeed, but the article already says that AC is required, lower in the lede: "What makes the paradox possible in set theory is the axiom of choice, which allows the construction of nonmeasurable sets, collections of points that do not have a volume in the ordinary sense and require an uncountably infinite number of arbitrary choices to specify." So unless something more than "AC is required" is intended, this doesn't need to also be in the first paragraph, which is already too long and detailed. — Carl (CBM · talk) 16:24, 11 March 2008 (UTC)
- P.S. I do think a case could be made that each invocation of AC is a single choice - the choice of a set of representatives. — Carl (CBM · talk) 16:26, 11 March 2008 (UTC)
- The article should clearly and quickly distinguish between a "theorem" like this and "all triangles have 180 degrees" or "there are infinitely many primes". Unlike the others, this "theorem" is a matter of opinion, and it's well understood that there is no right opinion.
- I don't think anybody could sanely think that "uncountably many choices" means a proof with uncountably many invocations of the axiom of choice. But, kudos man, just thinking about a proof of uncountable length makes my brain get get all woozy!
- I put in the caveats for the reader whose stomach becomes upset by counterintuitive results which contradict a correct intuition. This stuff is a bunch of set theoretic foolishness which has nothing to do with three dimensional geometry. It's really about the growth-rate at infinity for groups, which is a geometric notion on groups. The space-geometry part is just "the reals are an ordinal!" again, and there's a hundred years of this out there and its really getting tired. As for Alain Connes, bless his soul, his book explicitly advocates thinking of all subsets of R as measurable and you don't find many people fighting this fight. But it should be hashed and rehashed for the benefit of students, who need to be alerted as to when they are being sold a bill of goods.Likebox (talk) 09:07, 12 March 2008 (UTC)
- Actually, I can see Likebox's point, but he's wrong in every detail. If he could propose an edit which deals with his concerns, but is not mathematically incorrect, it might be included. — Arthur Rubin (talk) 13:02, 12 March 2008 (UTC)
- The problem with presenting things in a first-principles way is that the details look unfamiliar and the arguments need to be checked carefully because it is easy to make a mistake. I do it anyway, because the benefit is that it is much better pedagogically. In general, I don't think there is a good way of classifying people into "correct" and "incorrect". It is more useful to classify arguments into correct and incorrect. But everybody makes mistakes and I've made more than my share. In a forum like this, I don't worry so much about not getting corrected.Likebox (talk) 17:04, 12 March 2008 (UTC)
- The article does already discuss the issue of choice and measurability - see the third and fourth paragraphs of the lede.
- I still don't buy the "uncountably many choices", though. For one thing, the issue of countability/uncountability is a red herring - AC is needed to choose from countable collections of sets as well. But more importantly, the key property of the axiom of choice is that all the choice are made at the same time rather than one after another. The issue isn't whether it's possible to choose representatives separately, but whether it's possible to simultaneously select a representative from each of the sets in the collection. Saying "uncountably many choices" has a connotation that the choices are made one after another. — Carl (CBM · talk) 13:46, 12 March 2008 (UTC)
- Yes, I know that the idea here is that the choices are made "at the same time", but that is the whole philosophical point. You shouldn't carelessly think of sets as already selected from a predefined universe of sets, that's leads to Cantor/Russell paradoxes. To actually make a theory, you need to think of them as part of a universe that's constructed step by step. In the step by step construction, choice functions are only "born" after uncountably many steps. The whole question revolves around whether you are going to view sets as preexisting, or constructed symbolically by a computational step-by-step procedure. The first point of view is, in my opinion, outdated.
- Oh thank goodness, Likebox is here once again to save us from our "outdated" ways of thinking about mathematics. Can a 'computational' "proof" of the B/T Paradox be far behind? —Preceding unsigned comment added by 65.46.253.42 (talk) 20:13, 12 March 2008 (UTC)
- The article discusses choice, but it doesn't do it with enough feeling in my opinion. The distinction between countable and uncountable choice is the essential one. Countable choice is not a big deal unless you're studying set theory, because you end up using it without thinking. It's really only choice for the continuum which is a problem. Uncountable choice on sets which are as big as the continuum is controversial because it's only purpose seems to be to prevent you from defining Lebesgue measure properly. This is central to how you view the real numbers, and it gums up any natural discourse about random objects.
- I fortuitously stumbled on a respected source that says this (as an inconsequential aside)--- Alain Connes, and I think that justifies inclusion.Likebox (talk) 17:04, 12 March 2008 (UTC)
- Could you give the page number for the reference to Connes? If he mentions it as an aside, why would that mean it should be included here? (In any case, as I pointed out, it is included here.) The axiom of choice in not controversial in the present day; it's accepted and used by the vast majority of mathematicians including noncommutative geometers. I'm interested to see what Connes has to say.
- Also as an aside, in the canonical "constructed step by step" model of set theory, L, choice functions are all definable, and thus each can be constructed via a single application of comprehension. They aren't "born after an uncountable number of steps" any more than the entire set of real numbers is. — Carl (CBM · talk) 17:38, 12 March 2008 (UTC)
- The pages is 51-52 and around there, and the discussion is very nice. It's an aside in the sense that it is outside the main line of development of the book.
- You are right--- the step by step model has a choice function, but the construction of the step-by-step model makes it clear that it isn't constructing all of the universe. The reason is that L constructs "ordered" objects, the stuff that you can define iteratively in terms of text descriptions that are not "random". The intuition I have in this case is that it does not construct all of R, it "misses points", the random points.Likebox (talk) 20:41, 12 March 2008 (UTC)
- Yep. And even some not-all-that-random ones. Like 0# for example. --Trovatore (talk) 20:49, 12 March 2008 (UTC)
- You are right--- the step by step model has a choice function, but the construction of the step-by-step model makes it clear that it isn't constructing all of the universe. The reason is that L constructs "ordered" objects, the stuff that you can define iteratively in terms of text descriptions that are not "random". The intuition I have in this case is that it does not construct all of R, it "misses points", the random points.Likebox (talk) 20:41, 12 March 2008 (UTC)
The Banach-Tarski paradox is, indeed, a theorem
I noticed Arcfrk removed this sentence:
- Because there are points of view in mathematics which reject constructions of this type, this theorem is not considered to be true in an absolute sense, but only true relative to a particular system of axioms for set theory
While there are a very few mathematicians who dislike the axiom of choice, the consensus in the field is that the axiom of choice is a perfectly valid axiom and theorems proved with it are not "suspect" or "contingent" (no more than any other theorem). The lede does cover the minority point of view: "The existence of nonmeasurable sets, such as those in the Banach–Tarski paradox, has been used as an argument against the axiom of choice, although most mathematicians accept that nonmeasurable sets exist." That is about as much weight as the minority viewpoint should be given here, as it is exceedingly uncommon among contemporary mathematicians. — Carl (CBM · talk) 11:39, 13 March 2008 (UTC)
- The fact that the axiom of choice is accepted and used without question does not mean the results which absolutely require choice are uncontingent. They are not "suspect" in the sense that they are going to lead to logical problems, they are "suspect" in the sense that they are useless and silly. Nobody worries about BT when constructing measures, because mathematics evolved a machinery of measurable sets and random forcing which allows you to sidestep it, so that in every way it is more productive to think of it as false. But it took fifty years to acquire BT immunity, and the machinery evolved in a hostile environment, and that makes it cumbersome and alien to a student.
- This has nothing to do with disliking choice on sets. It has to do with whether the real numbers are a small enough collection to be productively described as a well-orderable set at all. Nearly all theorems are absolutely true, meaning that once you understand the proof, it can be easily translated from any one reasonable axiomatic system to any other. But a very few theorems, like BT, are true only relative to a particular axiomatization. When you claim to prove a counterintuitive geometrical theorem and that theorem is not true in an absolute sense, then this theorem is just an opinion. While I personally think it is an outdated opinion, I respect that it is a majority opinion, and it should be presented in the way that the majority believes is best. But it should not be presented as an unqualified absolute mathematical truth.Likebox (talk) 14:58, 13 March 2008 (UTC)
- There's no benefit in discussing "useless" and "silly" here. I don't follow your second paragraph above; all formalized theorems are only true relative to their axioms being true. In any case, the Banach-Tarski paradox is considered by nearly the entire mathematics community to be an (absolute) theorem, and Wikipedia is not the place to argue for a change in that attitude. If the opinion of the mathematics community begins to change, then this article should reflect that.
- The fact that the theorem uses the axiom of choice is explicitly covered in the lede; I don't see the need to give it more weight than the reasonable weight it is already given. — Carl (CBM · talk) 15:51, 13 March 2008 (UTC)
- There are different axiomatizations of the same objects, and nearly all of the time, you can translate theorems back and forth between different formalizations. For example, you can translate any theorem in finite set theory to the original Peano axioms and vice versa. There are axiomatizations of the reals as a complete ordered field, and you can translate most theorems into this formalization. Usually the objects that you have in mind when discussing geometry can be approached from the point of view of either second order logic or the theory of countable sets, and the different axiomatizations and points of view give results which are consistent with each other and with set theory. Those theorems which do not change from axiomatization to axiomatization are absolute, and they are not wedded to any particular formal system.
- The Banach Tarski theorem is in no way accepted by nearly all the mathematical community as an absolute theorem. What is true is that is a theorem of ZFC, and by social convention a ZFC theorem is accepted. This is to avoid squabbling over foundations when trying to evaluate correctness of a proof. My guess of the breakdown in opinion in the professional community would be: 45% really true because ZFC is reality, 45% true as a matter of social convenience, 5% false, 5% no truth value. But I didn't take a formal poll, and I might be wrong.
- You _of course_ have some kind of citation or reference to back up this astounding claim, I trust? —Preceding unsigned comment added by 65.46.253.42 (talk) 20:27, 13 March 2008 (UTC)
- Of course not--- I didn't think it was an astounding claim.Likebox (talk) 23:15, 13 March 2008 (UTC)
- Just to elaborate--- the Banach Tarski paradox is well known to not be an absolute theorem, in the sense that alternate axiomatizations have every subset of R measurable. The question is to what extent working mathematicians have a bias towards one axiomatization or another. From my experience, most of them don't care about questions of axiomatization that are not directly relevant to their work, so that means that they don't have a strong opinion one way or another. But having said that, the breakdown should follow the usual platonism/formalism/constructivism proportions, which I think are in the ratio 45/45/10.
- Here's an unrepresentative informal poll I found [1].
- And I don't see the Banach-Tarski paradox mentioned there once. As has been pointed out, you are of course welcome to your (wrong) opinions about the nature of mathematics, but they don't belong in Wikipedia unless they can be substantiated (by something other than a PHPnuke forum thread) and are deemed, by editorial consensus, to be relevant.
- Here's an unrepresentative informal poll I found [1].
- The point is that mathematicians, like any other human community, are aware that sometimes living in a community takes some compromise, and choice is not the most horrible compromise. These compromises, however, are sometimes mistinterpreted as a consensus about mathematical truth, when they are not.Likebox (talk) 18:20, 13 March 2008 (UTC)
- I defer to Carl, who is an expert on set theory and logic, concerning the perceptions of AC within those fields. As a general impression, I cannot recall ever personally encountering a mathematician who was afraid to use Zorn's lemma, well-orderness principle, and a few other workhorses of mathematical proofs dealing with infinite sets (and my sample size is in the hundreds, if not thousands). Contrary to what has been stated above, their use is nearly universal: much of basic analysis, algebra, and geometry uses them without explicitly acknowledging this fact, which is a clear sign how fringe is the view that Likebox is trying to peddle. Concerning axiomatizations: as far as I know, the consistency of neither ZF nor ZFC has been proved. In this sense, all of mathematics is on shaky foundation. I do not, however, consider either prudent or practical to insert a disclaimer of this nature into every single mathematical book, paper, and encyclopaedic article.
- On the subject of compromises: some time ago, Likebox and I worked out a compromise that we will keep the beginning of the article friendly to people just trying to learn a bit of interesting mathematics, without having to endure a mile long list of qualifiers (which I deeply cared about), and he can insert his onerous disclaimers elsewhere. However, he mistook this compromise for universal agreement with his misinformed interpretations, which it was not. Arcfrk (talk) 00:13, 14 March 2008 (UTC)
- It is unfortunate that you are taking this as an attempt on my part to insert my own interpretation into an article. It isn't. First of all, I don't have any problem with choice or Zorn's lemma, they are fine. I am only saying that when you prove a theorem like this one, every sensible mathematician knows that it does not have the same truth value as "integer multiplication is commutative". It is a matter of axioms and opinions, and it is only a social compact that makes you think of it as true. This is the last I am saying on the subject.Likebox (talk) 01:46, 14 March 2008 (UTC)
- "This is the last I am saying on the subject" -- Oh now President Likebox, I think we both know from experience that's just not true Dolores Landingham (talk) 18:26, 14 March 2008 (UTC)
- I didn't mean to sound imperious--- sorry. I just don't have anything more to say--- I'm repeating myself.Likebox (talk) 14:29, 15 March 2008 (UTC)
- Re Arcfrk: The status of AC in mathematics and its status in logic are both interesting philosophical questions and (in my opinion) have somewhat different answers. In mathematics outside of axiomatic set theory, as far as I can tell, the perception that there is any issue with AC is very small, and apparently diminished during the 20th century, possibly because contemporary mathematicians learned AC earlier in their education. Within axiomatic set theory, the study of determinacy is the main area in which axioms incompatible with choice are of interest. But this study is far removed from ordinary mathematics at the present time.
- It is true that the consistency of ZF has not been proved in the same way the consistency of Peano arithmetic has been (and such a proof is very unlikely). However, the consistency of ZFC is equivalent to the consistency of ZF by work of Goedel. — Carl (CBM · talk) 02:59, 14 March 2008 (UTC)
- Just a note on determinacy: I don't think that many set theorists who work in this area do so because they think the axiom of determinacy is actually true. Among those who are realists, and therefore think the question has a true or false answer, I'd bet the large majority think the axiom of choice is true. But the axiom of determinacy has some very interesting inner models, like L(R) for a fairly minimal example, and some interesting stuff happens in those models.
- From this point of view, inner models satisfying AD are models that simply omit the "problematic" sets of reals like the ones that witness Banach–Tarski. Inside L(R) you can't do a paradoxical decomposition, because the sets making up the decomposition just aren't elements of L(R). L(R) is allowed to think that all sets of reals are Lebesgue measurable, not because it disagrees with V about what it means to be Lebesgue measurable, but just because it can't see the counterexamples.
- There are lots of interesting questions about how closely an inner model of ZF+AD can resemble V. For example, which cardinals have to collapse? Steve Jackson has done a bunch of stuff on this. --Trovatore (talk) 04:58, 15 March 2008 (UTC)
Banach-Tarski Theorem should redirect to Banach-Tarski Paradox. The "paradox" is the counter-intuitive demonstration that an object can be divided into a small number of parts, just five, that lose their volume and be reassembled into a form that doubles the original volume. The fact that this theorem requires the Axiom of Choice is no more relevant than the fact that the Pythagorean Theorem requires Euclid's Fifth postulate. I understand that Tarski originally thought of this paradox/theorem as a counterexample to the Axiom of Choice, but later regarded it as evidence that "measure" was a more subtle concept than previously thought. Alan R. Fisher (talk) 23:04, 27 August 2008 (UTC)
- {{sofixit}}. Redirects are cheap, and this one is unambiguous; I don't think anyone will challenge you. But you might want to observe our conventions on capitalization and endashes, and make it point to the official article title, which is Banach–Tarski paradox. --Trovatore (talk) 08:20, 28 August 2008 (UTC)
- What Trovatore is saying is anyone can create redirects. I created these four just now: Banach–Tarski Theorem, Banach–Tarski theorem, Banach-Tarski Theorem Banach-Tarski theorem. — Carl (CBM · talk) 15:16, 28 August 2008 (UTC)
Generators of the free subgroup of SO(3)
In the proof in the article it is said "let A be a rotation of some irrational multiple of π, take arccos(1/3), about the first, x axis, and B be a rotation of some irrational multiple of π, take arccos(1/3), about the second, z axis". This leaves the impression that every pair of rotations by irrational multiple of π around orthogonal axes generates a free group of rank 2. However, from Stan Wagon's "The Banach-Tarski Paradox" I could only find that it suffices to take a pair of rotations of the same angle θ such that . So, unless someone can provide a reference to a proof that arbitrary irrational rotation angles suffice, I think the beforementioned sentence in the article needs to be made more precise.Jaan Vajakas (talk) 19:33, 12 December 2008 (UTC)
I would also be interested if anyone could provide a counterexample where two rotations by irrational multiples of π around orthogonal axes do not generate a free group.Jaan Vajakas (talk) 20:52, 12 December 2008 (UTC)
All right, I found an example myself: if α and β are such that cos(α/2)*cos(β/2)=0.5 and if a denotes rotation about x-axis by angle α and b is rotation about z-axis by β then ababab is the identity transform. Since there is a continuum of such pairs (α, β) but the set of the pairs, where either component is a rational multiple of π, is countable, it follows that in some of the pairs both components must be irrational multiples of π.Jaan Vajakas (talk) 08:40, 14 December 2008 (UTC)
Since nobody replied, I made the change to the article.Jaan Vajakas (talk) 12:58, 14 December 2008 (UTC)
'almost' in Step 3 of proof?
Hi Guys,
I'm confused by the word 'almost' and 'majority of' in step 3 of this section. I've traced back the origin of these words to an anon and a helpful user, so I don't think it's vandalism. But I'm fairly fluent in mathematics and the wording doesn't make sense to me.... Anyone understand their purpose?
Isaac (talk) 17:48, 29 December 2008 (UTC)
- I don't know what that's about, but I think it is some editorializing which could better be done with a discussion instead of with some curt comments. The point is probably that the process of construction of the sets is transfinite inductive, if you want to turn it into a construction, and it doesn't necessarily terminate by exhausting all the real numbers, or all the points in the ball. In a philosophical view that denies the well-ordering of the real numbers, the paradoxical decomposition can't happen because there aren't ordinals big enough to match one-to-one with the points in a ball. Then you can think of every set as measurable, and BT is false.Likebox (talk) 17:49, 16 March 2009 (UTC)
- It's saying that the set of points that can be reached in more than one way is of measure 0 (see almost every). It has nothing to do with transfinite induction. This is then explained in more detail in the section "Some details, fleshed out." slightly below. — Carl (CBM · talk) 19:06, 16 March 2009 (UTC)
- Oops! My biases are showing. I'm blushing.Likebox (talk) 19:13, 17 March 2009 (UTC)
- Still, isn't this a contradiction to the statement that the set is countable? The set is uncountable, so with there are uncountable many points which were not rotated.
quntitative bund
can sombody writ the number of pises one shold decompose the boll into in order to bols (if posibale - the best known, if posibale - a lower bund too)
thenks 132.77.4.43 (talk) 12:22, 4 July 2009 (UTC)
- The minimum number of pieces that works is 5. The article already says this (and has done so for years). --Zundark (talk) 14:28, 15 August 2009 (UTC)
the pea and the Sun
I have to agree with the anon here. The theorem is an assertion about R3, not about legumes and stars. Whether the physical universe, or its spacetime, is faithfully modeled/described by the real numbers, is an open question (and it's quite plausible that it always will be an open question). I appreciate the desire to bring in some intuition (or in this case counter-intuition) but it should be done more carefully. --Trovatore (talk) 19:04, 26 July 2008 (UTC)
- The pea and the Sun is a common analogy used in describing the paradox (just as frequent as talking about "hairy balls" when discussing indices of vector fields on a sphere), and we would be remiss in not including it (e.g. Google Scholar search). I do it think it is misplaced however. I would be much happier with it being in the very beginning. After the more formal explanation has started, I don't think it adds much to all of a sudden bring up peas and Suns. --C S (talk) 23:15, 26 July 2008 (UTC)
- Ok, I cleaned it up along the lines of what I said. I think the first paragraph is pretty good. --C S (talk) 23:27, 26 July 2008 (UTC)
- Yeah, the pea/Sun thing works OK with that wording. I think what the anon objected to was claiming that the behavior of peas was part of the content of the theorem itself, and I agreed that that was problematic. --Trovatore (talk) 01:46, 27 July 2008 (UTC)
Would it be appropriate to add the following sentence to the first paragraph?
A humorous name for this strong form is the General Suitcase Packing theorem, the joke being the non-constructive nature of the proof.
(I have no source to cite, but I recall reading something similar many years ago.) Alan R. Fisher (talk) 05:39, 1 September 2008 (UTC)
The pea and the Sun example is terribly misleading, however popular it is, since the pea and the Sun are roughly spherical, but the construction is about turning one ball into two balls of the same radius. I added "Alternatively, an anagram for Banach-Tarski is Banach-Tarski Banach-Tarski" but that was reverted, along with excisions of some of the nonsense in the first paragraph. As a mathematician, I have no idea what "infinite scattering of points" is supposed to mean, and I doubt it tells much of anything correct to anyone else. Note that the rationals are a measurable subset of the reals, so the paradox is not that we have decompositions into dense subsets. I added a link to non-measurable sets which was reverted, too. I guess I'll give up trying to improve this tripe. —Preceding unsigned comment added by 66.30.116.104 (talk) 19:36, 15 February 2010 (UTC)